These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31443774)

  • 1. When an octopus has MS: Application of neurophysiology and immunology of octopuses for multiple sclerosis.
    Naser Moghadasi A
    Med Hypotheses; 2019 Oct; 131():109297. PubMed ID: 31443774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain.
    Deryckere A; Styfhals R; Elagoz AM; Maes GE; Seuntjens E
    Elife; 2021 Aug; 10():. PubMed ID: 34425939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris.
    Gutnick T; Zullo L; Hochner B; Kuba MJ
    Curr Biol; 2020 Nov; 30(21):4322-4327.e3. PubMed ID: 32916119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An embodied view of octopus neurobiology.
    Hochner B
    Curr Biol; 2012 Oct; 22(20):R887-92. PubMed ID: 23098601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording electrical activity from the brain of behaving octopus.
    Gutnick T; Neef A; Cherninskyi A; Ziadi-Künzli F; Di Cosmo A; Lipp HP; Kuba MJ
    Curr Biol; 2023 Mar; 33(6):1171-1178.e4. PubMed ID: 36827988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How nervous systems evolve in relation to their embodiment: what we can learn from octopuses and other molluscs.
    Hochner B
    Brain Behav Evol; 2013; 82(1):19-30. PubMed ID: 23979453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms.
    Hochner B; Shomrat T; Fiorito G
    Biol Bull; 2006 Jun; 210(3):308-17. PubMed ID: 16801504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonsomatotopic organization of the higher motor centers in octopus.
    Zullo L; Sumbre G; Agnisola C; Flash T; Hochner B
    Curr Biol; 2009 Oct; 19(19):1632-6. PubMed ID: 19765993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve degeneration and regeneration in the cephalopod mollusc Octopus vulgaris: the case of the pallial nerve.
    Imperadore P; Shah SB; Makarenkova HP; Fiorito G
    Sci Rep; 2017 Apr; 7():46564. PubMed ID: 28425503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis.
    De Santi L; Annunziata P; Sessa E; Bramanti P
    J Neurol Sci; 2009 Dec; 287(1-2):17-26. PubMed ID: 19758606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of system x
    Merckx E; Albertini G; Paterka M; Jensen C; Albrecht P; Dietrich M; Van Liefferinge J; Bentea E; Verbruggen L; Demuyser T; Deneyer L; Lewerenz J; van Loo G; De Keyser J; Sato H; Maher P; Methner A; Massie A
    J Neuroinflammation; 2017 Jan; 14(1):9. PubMed ID: 28086920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate, T cells and multiple sclerosis.
    Levite M
    J Neural Transm (Vienna); 2017 Jul; 124(7):775-798. PubMed ID: 28236206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embodied mechanisms of motor control in the octopus.
    Hochner B; Zullo L; Shomrat T; Levy G; Nesher N
    Curr Biol; 2023 Oct; 33(20):R1119-R1125. PubMed ID: 37875094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis.
    Elieh-Ali-Komi D; Cao Y
    Clin Rev Allergy Immunol; 2017 Jun; 52(3):436-445. PubMed ID: 28025778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.
    Prinz J; Karacivi A; Stormanns ER; Recks MS; Kuerten S
    PLoS One; 2015; 10(12):e0144847. PubMed ID: 26658811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octopus vulgaris uses visual information to determine the location of its arm.
    Gutnick T; Byrne RA; Hochner B; Kuba M
    Curr Biol; 2011 Mar; 21(6):460-2. PubMed ID: 21396818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From injury to full repair: nerve regeneration and functional recovery in the common octopus,
    Imperadore P; Parazzoli D; Oldani A; Duebbert M; Büschges A; Fiorito G
    J Exp Biol; 2019 Oct; 222(Pt 19):. PubMed ID: 31527179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Autoimmune Encephalomyelitis (EAE)-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1): Implications in Multiple Sclerosis (MS)-Induced Neurological Disability and Associated Myelin Damage.
    Khorshid Ahmad T; Zhou T; AlTaweel K; Cortes C; Lillico R; Lakowski TM; Gozda K; Namaka MP
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28604632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Chu F; Shi M; Zheng C; Shen D; Zhu J; Zheng X; Cui L
    J Neuroimmunol; 2018 May; 318():1-7. PubMed ID: 29606295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm coordination in octopus crawling involves unique motor control strategies.
    Levy G; Flash T; Hochner B
    Curr Biol; 2015 May; 25(9):1195-200. PubMed ID: 25891406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.