BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 31444201)

  • 1. Physiological and Metabolic Responses of Freshwater and Brackish-Water Strains of Microcystis aeruginosa Acclimated to a Salinity Gradient: Insight into Salt Tolerance.
    Georges des Aulnois M; Roux P; Caruana A; Réveillon D; Briand E; Hervé F; Savar V; Bormans M; Amzil Z
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt Shock Responses of
    Georges des Aulnois M; Réveillon D; Robert E; Caruana A; Briand E; Guljamow A; Dittmann E; Amzil Z; Bormans M
    Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32197406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel salt-tolerant genotype illuminates the sucrose gene evolution in freshwater bloom-forming cyanobacterium Microcystis aeruginosa.
    Tanabe Y; Yamaguchi H; Sano T; Kawachi M
    FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upstream nitrogen availability determines the Microcystis salt tolerance and influences microcystins release in brackish water.
    Li X; Li L; Huang Y; Wu H; Sheng S; Jiang X; Chen X; Ostrovsky I
    Water Res; 2024 Mar; 252():121213. PubMed ID: 38306752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium sensitivity differs among strains of the harmful cyanobacterium Microcystis and correlates with the presence of salt tolerance genes.
    Sandrini G; Huisman J; Matthijs HC
    FEMS Microbiol Lett; 2015 Aug; 362(16):. PubMed ID: 26208527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of the Freshwater Bloom-Forming Cyanobacterium
    Tanabe Y; Hodoki Y; Sano T; Tada K; Watanabe MM
    Front Microbiol; 2018; 9():1150. PubMed ID: 29922255
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis.
    Meissner S; Steinhauser D; Dittmann E
    Environ Microbiol; 2015 May; 17(5):1497-509. PubMed ID: 25041118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal connectivity of a toxic cyanobacterial community and its associated microbiome along a freshwater-marine continuum.
    Reignier O; Bormans M; Hervé F; Robert E; Savar V; Tanniou S; Amzil Z; Noël C; Briand E
    Harmful Algae; 2024 Apr; 134():102627. PubMed ID: 38705620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver.
    Le Manach S; Sotton B; Huet H; Duval C; Paris A; Marie A; Yépremian C; Catherine A; Mathéron L; Vinh J; Edery M; Marie B
    Environ Pollut; 2018 Mar; 234():523-537. PubMed ID: 29220784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.
    Agha M; Ennen JR; Bower DS; Nowakowski AJ; Sweat SC; Todd BD
    Biol Rev Camb Philos Soc; 2018 Aug; 93(3):1634-1648. PubMed ID: 29575680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail.
    Yokomizo T; Takahashi Y
    Sci Rep; 2020 Sep; 10(1):16049. PubMed ID: 32994494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and metabolic responses of Microcystis aeruginosa to a salinity gradient.
    Wang W; Sheng Y; Jiang M
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13226-13237. PubMed ID: 34585353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warming and Salt Intrusion Affect Microcystin Production in Tropical Bloom-Forming
    Trung B; Vollebregt ME; Lürling M
    Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term acclimation to warming improves the adaptive ability of Microcystis aeruginosa to high temperature: Based on growth, photosynthetic activity, and microcystin production.
    Wang Z; Lei Y; Liu Q; Sun Y; Zhang L; Huang Y; Yang Z
    Environ Pollut; 2023 Dec; 338():122727. PubMed ID: 37838315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesohaline conditions represent the threshold for oxidative stress, cell death and toxin release in the cyanobacterium Microcystis aeruginosa.
    Ross C; Warhurst BC; Brown A; Huff C; Ochrietor JD
    Aquat Toxicol; 2019 Jan; 206():203-211. PubMed ID: 30500607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiversity of cyanobacteria and other aquatic microorganisms across a freshwater to brackish water gradient determined by shotgun metagenomic sequencing analysis in the San Francisco Estuary, USA.
    Kurobe T; Lehman PW; Hammock BG; Bolotaolo MB; Lesmeister S; Teh SJ
    PLoS One; 2018; 13(9):e0203953. PubMed ID: 30248115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats.
    Okello W; Portmann C; Erhard M; Gademann K; Kurmayer R
    Environ Toxicol; 2010 Aug; 25(4):367-80. PubMed ID: 19609871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evidence on the effects of temperature and salinity in morphological traits of the Microcystis aeruginosa complex.
    Sampognaro L; Eirín K; Martínez de la Escalera G; Piccini C; Segura A; Kruk C
    J Microbiol Methods; 2020 Aug; 175():105971. PubMed ID: 32544485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.