These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31444483)

  • 41. Coupling methanogenesis with iron reduction by acetotrophic Methanosarcina mazei zm-15.
    Yang Z; Lu Y
    Environ Microbiol Rep; 2022 Oct; 14(5):804-811. PubMed ID: 35641250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture.
    Zheng S; Zhang H; Li Y; Zhang H; Wang O; Zhang J; Liu F
    Front Microbiol; 2015; 6():941. PubMed ID: 26441876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.
    Mand J; Park HS; Okoro C; Lomans BP; Smith S; Chiejina L; Voordouw G
    Front Microbiol; 2015; 6():1538. PubMed ID: 26793176
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.
    Rohlin L; Gunsalus RP
    BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane.
    Kurade MB; Saha S; Salama ES; Patil SM; Govindwar SP; Jeon BH
    Bioresour Technol; 2019 Jan; 272():351-359. PubMed ID: 30384210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots.
    Lehmann-Richter S; Grosskopf R; Liesack W; Frenzel P; Conrad R
    Environ Microbiol; 1999 Apr; 1(2):159-66. PubMed ID: 11207731
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing.
    Zheng D; Wang HZ; Gou M; Nobu MK; Narihiro T; Hu B; Nie Y; Tang YQ
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8631-8645. PubMed ID: 31418053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of anode potential on electrogenesis, methanogenesis and sulfidogenesis in a simulated sewer condition.
    Sun Y; Ter Heijne A; Rijnaarts H; Chen WS
    Water Res; 2022 Nov; 226():119229. PubMed ID: 36242938
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An iron corrosion-assisted H
    Kato S; Takashino M; Igarashi K; Mochimaru H; Mayumi D; Tamaki H
    Sci Rep; 2020 Nov; 10(1):19124. PubMed ID: 33154519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.
    Schulz K; Hunger S; Brown GG; Tsai SM; Cerri CC; Conrad R; Drake HL
    ISME J; 2015 Aug; 9(8):1778-92. PubMed ID: 25615437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stimulation of methane production from benzoate with addition of carbon materials.
    Zhang F; Qian DK; Wang XB; Dai K; Wang T; Zhang W; Zeng RJ
    Sci Total Environ; 2020 Jun; 723():138080. PubMed ID: 32220738
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The bioenergetics of methanogenesis.
    Daniels L; Sparling R; Sprott GD
    Biochim Biophys Acta; 1984 Sep; 768(2):113-63. PubMed ID: 6236847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions.
    Angel R; Claus P; Conrad R
    ISME J; 2012 Apr; 6(4):847-62. PubMed ID: 22071343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide.
    Aryal N; Tremblay PL; Lizak DM; Zhang T
    Bioresour Technol; 2017 Jun; 233():184-190. PubMed ID: 28279911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control on rate and pathway of anaerobic organic carbon degradation in the seabed.
    Beulig F; Røy H; Glombitza C; Jørgensen BB
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):367-372. PubMed ID: 29279408
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogen consumption by methanogens on the early Earth.
    Kral TA; Brink KM; Miller SL; McKay CP
    Orig Life Evol Biosph; 1998 Jun; 28(3):311-9. PubMed ID: 9611769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor.
    Yang SL; Tang YQ; Gou M; Jiang X
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):3269-77. PubMed ID: 25427678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative Microbiome Analysis Reveals the Ecological Relationships Between Rumen Methanogens, Acetogens, and Their Hosts.
    Li Z; Wang X; Alberdi A; Deng J; Zhong Z; Si H; Zheng C; Zhou H; Wang J; Yang Y; Wright AG; Mao S; Zhang Z; Guan L; Li G
    Front Microbiol; 2020; 11():1311. PubMed ID: 32714292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Screening of anaerobic activities in sediments of an acidic environment: Tinto River.
    Sánchez-Andrea I; Rojas-Ojeda P; Amils R; Sanz JL
    Extremophiles; 2012 Nov; 16(6):829-39. PubMed ID: 22956355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.