These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31444784)

  • 1. Biocompatibility of Oxygen-Sensing Paramagnetic Implants.
    Tse D; Kuppusamy P
    Cell Biochem Biophys; 2019 Sep; 77(3):197-202. PubMed ID: 31444784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry.
    Kmiec MM; Tse D; Mast JM; Ahmad R; Kuppusamy P
    Biomed Microdevices; 2019 Jul; 21(3):71. PubMed ID: 31286244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen sensitivity and biocompatibility of an implantable paramagnetic probe for repeated measurements of tissue oxygenation.
    Meenakshisundaram G; Eteshola E; Pandian RP; Bratasz A; Selvendiran K; Lee SC; Krishna MC; Swartz HM; Kuppusamy P
    Biomed Microdevices; 2009 Aug; 11(4):817-26. PubMed ID: 19319683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-clinical evaluation of OxyChip for long-term EPR oximetry.
    Hou H; Khan N; Gohain S; Kuppusamy ML; Kuppusamy P
    Biomed Microdevices; 2018 Mar; 20(2):29. PubMed ID: 29549438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-Sensing Paramagnetic Probes for Clinical Oximetry.
    Kmiec MM; Tse D; Kuppusamy P
    Adv Exp Med Biol; 2021; 1269():259-263. PubMed ID: 33966227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implantable Teflon chip holding lithium naphthalocyanine microcrystals for secure, safe, and repeated measurements of pO2 in tissues.
    Pandian RP; Meenakshisundaram G; Bratasz A; Eteshola E; Lee SC; Kuppusamy P
    Biomed Microdevices; 2010 Jun; 12(3):381-7. PubMed ID: 20058084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate and sensitive measurements of pO(2) in vivo using low frequency EPR spectroscopy: how to confer biocompatibility to the oxygen sensors.
    Gallez B; Mäder K
    Free Radic Biol Med; 2000 Dec; 29(11):1078-84. PubMed ID: 11121714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of pO
    Hou H; Khan N; Kuppusamy P
    Adv Exp Med Biol; 2017; 977():313-318. PubMed ID: 28685460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of biocompatible implants of fusinite for in vivo EPR oximetry.
    Gallez B; Debuyst R; Liu KJ; Demeure R; Dejehet F; Swartz HM
    MAGMA; 1996 Mar; 4(1):71-5. PubMed ID: 8774004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of lithium naphthalocyanine (LiNc) microcrystals for biological EPR oximetry.
    Pandian RP; Chacko SM; Kuppusamy ML; Rivera BK; Kuppusamy P
    Adv Exp Med Biol; 2011; 701():29-36. PubMed ID: 21445766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry.
    Meenakshisundaram G; Eteshola E; Pandian RP; Bratasz A; Lee SC; Kuppusamy P
    Biomed Microdevices; 2009 Aug; 11(4):773-82. PubMed ID: 19291409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer coating of paramagnetic particulates for in vivo oxygen-sensing applications.
    Eteshola E; Pandian RP; Lee SC; Kuppusamy P
    Biomed Microdevices; 2009 Apr; 11(2):379-87. PubMed ID: 19083100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of biocompatible films of polytetrafluoroethylene polymers holding lithium phthalocyanine crystals for their use in EPR oximetry.
    Dinguizli M; Jeumont S; Beghein N; He J; Walczak T; Lesniewski PN; Hou H; Grinberg OY; Sucheta A; Swartz HM; Gallez B
    Biosens Bioelectron; 2006 Jan; 21(7):1015-22. PubMed ID: 16368480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal Muscle Oxygenation Measured by EPR Oximetry Using a Highly Sensitive Polymer-Encapsulated Paramagnetic Sensor.
    Hou H; Khan N; Nagane M; Gohain S; Chen EY; Jarvis LA; Schaner PE; Williams BB; Flood AB; Swartz HM; Kuppusamy P
    Adv Exp Med Biol; 2016; 923():351-357. PubMed ID: 27526163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of biocompatible oxygen-permeable films holding paramagnetic carbon particles: evaluation of their performance and stability in EPR oximetry.
    He J; Beghein N; Ceroke P; Clarkson RB; Swartz HM; Gallez B
    Magn Reson Med; 2001 Sep; 46(3):610-4. PubMed ID: 11550256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the Implantable Resonator System for Clinical EPR Oximetry.
    Caston RM; Schreiber W; Hou H; Williams BB; Chen EY; Schaner PE; Jarvis LA; Flood AB; Petryakov SV; Kmiec MM; Kuppusamy P; Swartz HM
    Cell Biochem Biophys; 2017 Dec; 75(3-4):275-283. PubMed ID: 28687906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OxyChip embedded with radio-opaque gold nanoparticles for anatomic registration and oximetry in tissues.
    Kmiec MM; Hebert KA; Tse D; Hodge S; Williams BB; Schaner PE; Kuppusamy P
    Magn Reson Med; 2022 Mar; 87(3):1621-1637. PubMed ID: 34719047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofiber-based paramagnetic probes for rapid, real-time biomedical oximetry.
    Bhallamudi VP; Xue R; Purser CM; Presley KF; Banasavadi-Siddegowda YK; Hwang J; Kaur B; Hammel PC; Poirier MG; Lannutti JJ; Pandian RP
    Biomed Microdevices; 2016 Apr; 18(2):38. PubMed ID: 27106026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular paramagnetic spin-doped biopolymeric oxygen sensor.
    Meenakshisundaram G; Eteshola E; Blank A; Lee SC; Kuppusamy P
    Biosens Bioelectron; 2010 Jun; 25(10):2283-9. PubMed ID: 20371170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo electron paramagnetic resonance oximetry with particulate materials.
    Dunn JF; Swartz HM
    Methods; 2003 Jun; 30(2):159-66. PubMed ID: 12725782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.