BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31444858)

  • 1. Effect of isoxazole derivatives of tetrahydrofuran neolignans on intracellular amastigotes of Leishmania (Leishmania) amazonensis: A structure-activity relationship comparative study with triazole-neolignan-based compounds.
    das Neves AR; Trefzger OS; Barbosa NV; Honorato AM; Carvalho DB; Moslaves IS; Kadri MCT; Yoshida NC; Kato MJ; Arruda CCP; Baroni ACM
    Chem Biol Drug Des; 2019 Dec; 94(6):2004-2012. PubMed ID: 31444858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis and antitrypanosomatid activities of 3,5-diaryl-isoxazole analogues based on neolignans veraguensin, grandisin and machilin G.
    Trefzger OS; das Neves AR; Barbosa NV; Carvalho DB; Pereira IC; Perdomo RT; Matos MFC; Yoshida NC; Kato MJ; de Albuquerque S; Arruda CCP; Baroni ACM
    Chem Biol Drug Des; 2019 Mar; 93(3):313-324. PubMed ID: 30354012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G.
    Costa EC; Cassamale TB; Carvalho DB; Bosquiroli LS; Ojeda M; Ximenes TV; Matos MF; Kadri MC; Baroni AC; Arruda CC
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27331807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis.
    da Rosa R; de Moraes MH; Zimmermann LA; Schenkel EP; Steindel M; Bernardes LSC
    Eur J Med Chem; 2017 Mar; 128():25-35. PubMed ID: 28152426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis, antileishmanial, and antifungal biological evaluation of novel 3,5-disubstituted isoxazole compounds based on 5-nitrofuran scaffolds.
    Trefzger OS; Barbosa NV; Scapolatempo RL; das Neves AR; Ortale MLFS; Carvalho DB; Honorato AM; Fragoso MR; Shuiguemoto CYK; Perdomo RT; Matos MFC; Chang MR; Arruda CCP; Baroni ACM
    Arch Pharm (Weinheim); 2020 Feb; 353(2):e1900241. PubMed ID: 31840866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity.
    Zimmermann LA; de Moraes MH; da Rosa R; de Melo EB; Paula FR; Schenkel EP; Steindel M; Bernardes LSC
    Bioorg Med Chem; 2018 Sep; 26(17):4850-4862. PubMed ID: 30173929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric Oxide Induction in Peritoneal Macrophages by a 1,2,3-Triazole Derivative Improves Its Efficacy upon
    Almeida-Souza F; da Silva VD; Taniwaki NN; Hardoim DJ; Mendonça Filho AR; Moreira WFF; Buarque CD; Calabrese KDS; Abreu-Silva AL
    J Med Chem; 2021 Sep; 64(17):12691-12704. PubMed ID: 34427442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Antileishmanial Effect of 3,5-Diaryl-isoxazole Analogues Based on Veraguensin, Grandisin, and Machilin G: A Glance at a Preclinical Study.
    das Neves AR; Carvalho DB; Silva F; Rosalem RF; Pelizaro BI; Castilho PF; Oliveira KMP; Cassemiro NS; Pessatto LR; Paredes-Gamero EJ; Piranda EM; Silva DB; Arruda CCP; Baroni ACM
    ACS Infect Dis; 2023 May; 9(5):1150-1159. PubMed ID: 37103973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Effects of the Neolignan 2,3-Dihydrobenzofuran Against Leishmania Amazonensis.
    de Castro Oliveira LG; Brito LM; de Moraes Alves MM; Amorim LV; Sobrinho-Júnior EP; de Carvalho CE; da Franca Rodrigues KA; Arcanjo DD; das Graças Lopes Citó AM; de Amorim Carvalho FA
    Basic Clin Pharmacol Toxicol; 2017 Jan; 120(1):52-58. PubMed ID: 27398818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-activity relationship of antileishmanials neolignan analogues.
    Aveniente M; Pinto EF; Santos LS; Rossi-Bergmann B; Barata LE
    Bioorg Med Chem; 2007 Dec; 15(23):7337-43. PubMed ID: 17888668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Triazole Hybrid of Neolignans as a Potential Antileishmanial Agent by Triggering Mitochondrial Dysfunction.
    Cardozo Pinto de Arruda C; de Jesus Hardoim D; Silva Rizk Y; da Silva Freitas de Souza C; Zaverucha do Valle T; Bento Carvalho D; Nosomi Taniwaki N; de Morais Baroni AC; da Silva Calabrese K
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31861910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 3-alkylpyridine marine alkaloid analogues in Leishmania species related to American cutaneous leishmaniasis.
    Machado PA; Hilário FF; Carvalho LO; Silveira ML; Alves RB; Freitas RP; Coimbra ES
    Chem Biol Drug Des; 2012 Nov; 80(5):745-51. PubMed ID: 22882996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Bixa orellana against Leishmania amazonensis.
    García M; Monzote L; Montalvo AM; Scull R
    Forsch Komplementmed; 2011; 18(6):351-3. PubMed ID: 22189367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antileishmanial compounds from Connarus suberosus: Metabolomics, isolation and mechanism of action.
    Morais LS; Dusi RG; Demarque DP; Silva RL; Albernaz LC; Báo SN; Merten C; Antinarelli LMR; Coimbra ES; Espindola LS
    PLoS One; 2020; 15(11):e0241855. PubMed ID: 33156835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydroabietic acid isolated from Pinus elliottii exerts in vitro antileishmanial action by pro-oxidant effect, inducing ROS production in promastigote and downregulating Nrf2/ferritin expression in amastigote forms of Leishmania amazonensis.
    Gonçalves MD; Bortoleti BTS; Tomiotto-Pellissier F; Miranda-Sapla MM; Assolini JP; Carloto ACM; Carvalho PGC; Tudisco ET; Urbano A; Ambrósio SR; Hirooka EY; Simão ANC; Costa IN; Pavanelli WR; Conchon-Costa I; Arakawa NS
    Fitoterapia; 2018 Jul; 128():224-232. PubMed ID: 29802873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antileishmanial activity and ultrastructural changes of related tetrahydrofuran dineolignans isolated from Saururus cernuus L. (Saururaceae).
    Brito JR; Passero LFD; Bezerra-Souza A; Laurenti MD; Romoff P; Barbosa H; Ferreira EA; Lago JHG
    J Pharm Pharmacol; 2019 Dec; 71(12):1871-1878. PubMed ID: 31595517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae).
    Lima GS; Castro-Pinto DB; Machado GC; Maciel MA; Echevarria A
    Phytomedicine; 2015 Nov; 22(12):1133-7. PubMed ID: 26547537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Synthesis and Antileishmanial Activity of Naphthotriazolyl-4- Oxoquinolines.
    Oliveira VG; Dos Santos Faiões V; Gonçalves GBR; Lima MFO; Boechat FCS; Cunha AC; de Andrade-Neto VV; de C da Silva F; Torres-Santos EC; de Souza MCBV
    Curr Top Med Chem; 2018; 18(17):1454-1464. PubMed ID: 30277154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro antileishmanial activity of essential oil from Aloysia gratissima and guaiol, its major sesquiterpene against Leishmania amazonensis.
    Garcia MCF; Soares DC; Santana RC; Saraiva EM; Siani AC; Ramos MFS; Danelli MDGM; Souto-Padron TC; Pinto-da-Silva LH
    Parasitology; 2018 Aug; 145(9):1219-1227. PubMed ID: 29352826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp.
    Calixto SL; Glanzmann N; Xavier Silveira MM; da Trindade Granato J; Gorza Scopel KK; Torres de Aguiar T; DaMatta RA; Macedo GC; da Silva AD; Coimbra ES
    Chem Biol Interact; 2018 Sep; 293():141-151. PubMed ID: 30098941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.