These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 31445306)

  • 61. Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: significance of ammonia.
    Tian C; Liu R; Liu H; Qu J
    Water Res; 2013 Oct; 47(15):5901-10. PubMed ID: 23911224
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatio-temporal variability of halogenated disinfection by-products in a large-scale two-source water distribution system with enhanced chlorination.
    Dong F; Pang Z; Yu J; Deng J; Li X; Ma X; Dietrich AM; Deng Y
    J Hazard Mater; 2022 Feb; 423(Pt A):127113. PubMed ID: 34523488
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities.
    Li XF; Mitch WA
    Environ Sci Technol; 2018 Feb; 52(4):1681-1689. PubMed ID: 29283253
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter.
    Goslan EH; Seigle C; Purcell D; Henderson R; Parsons SA; Jefferson B; Judd SJ
    Chemosphere; 2017 Mar; 170():1-9. PubMed ID: 27951445
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Non-volatile disinfection byproducts are far more toxic to mammalian cells than volatile byproducts.
    Wu QY; Liang ZF; Wang WL; Du Y; Hu HY; Yang LL; Huang WC
    Water Res; 2020 Sep; 183():116080. PubMed ID: 32622238
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nontargeted identification of chlorinated disinfection byproducts formed from natural organic matter using Orbitrap mass spectrometry and a halogen extraction code.
    Lu Y; Song ZM; Wang C; Liang JK; Hu Q; Wu QY
    J Hazard Mater; 2021 Aug; 416():126198. PubMed ID: 34492962
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nonhalogenated Aromatic DBPs in Drinking Water Chlorination: A Gap between NOM and Halogenated Aromatic DBPs.
    Jiang J; Han J; Zhang X
    Environ Sci Technol; 2020 Feb; 54(3):1646-1656. PubMed ID: 31909989
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Terrestrial dissolved organic matter source affects disinfection by-product formation during water treatment and subsequent toxicity.
    Franklin HM; Doederer K; Neale PA; Hayton JB; Fisher P; Maxwell P; Carroll AR; Burford MA; Leusch FDL
    Environ Pollut; 2021 Aug; 283():117232. PubMed ID: 34034019
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk.
    Kolb C; Francis RA; VanBriesen JM
    J Environ Sci (China); 2017 Aug; 58():191-207. PubMed ID: 28774609
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Drivers of Disinfection Byproduct Cytotoxicity in U.S. Drinking Water: Should Other DBPs Be Considered for Regulation?
    Allen JM; Plewa MJ; Wagner ED; Wei X; Bokenkamp K; Hur K; Jia A; Liberatore HK; Lee CT; Shirkhani R; Krasner SW; Richardson SD
    Environ Sci Technol; 2022 Jan; 56(1):392-402. PubMed ID: 34910457
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials.
    Ding S; Deng Y; Bond T; Fang C; Cao Z; Chu W
    Water Res; 2019 Sep; 160():313-329. PubMed ID: 31154129
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The formation and control of emerging disinfection by-products of health concern.
    Krasner SW
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1904):4077-95. PubMed ID: 19736234
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation.
    Abusallout I; Hua G
    Chemosphere; 2016 Sep; 159():184-192. PubMed ID: 27289205
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessment of disinfection by-products in drinking water in Korea.
    Shin D; Chung Y; Choi Y; Kim J; Park Y; Kum H
    J Expo Anal Environ Epidemiol; 1999; 9(3):192-9. PubMed ID: 10412668
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Disinfection by-product formation during seawater desalination: A review.
    Kim D; Amy GL; Karanfil T
    Water Res; 2015 Sep; 81():343-55. PubMed ID: 26099832
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The DBP exposome: Development of a new method to simultaneously quantify priority disinfection by-products and comprehensively identify unknowns.
    Kimura SY; Cuthbertson AA; Byer JD; Richardson SD
    Water Res; 2019 Jan; 148():324-333. PubMed ID: 30391861
    [TBL] [Abstract][Full Text] [Related]  

  • 78. How well does XAD resin extraction recover halogenated disinfection byproducts for comprehensive identification and toxicity testing?
    Liao X; Allen JM; Granger CO; Richardson SD
    J Environ Sci (China); 2022 Jul; 117():264-275. PubMed ID: 35725078
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.
    Zhai H; He X; Zhang Y; Du T; Adeleye AS; Li Y
    Chemosphere; 2017 Aug; 181():224-231. PubMed ID: 28445816
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dominant formation of unregulated disinfection by-products during electrocoagulation treatment of landfill leachate.
    Xu B; Iskander SM; He Z
    Environ Res; 2020 Mar; 182():109006. PubMed ID: 31863939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.