These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31445447)

  • 1. Comprehensive study to design advanced metal-carbide@garaphene and metal-carbide@iron oxide nanoparticles with tunable structure by the laser ablation in liquid.
    Davodi F; Mühlhausen E; Settipani D; Rautama EL; Honkanen AP; Huotari S; Marzun G; Taskinen P; Kallio T
    J Colloid Interface Sci; 2019 Nov; 556():180-192. PubMed ID: 31445447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Titanium Carbide (TiC) and TiC@C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid.
    De Bonis A; Santagata A; Galasso A; Laurita A; Teghil R
    J Colloid Interface Sci; 2017 Mar; 489():76-84. PubMed ID: 27597260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M
    Zhao W; Lu X; Selvaraj M; Wei W; Jiang Z; Ullah N; Liu J; Xie J
    Nanoscale; 2018 May; 10(20):9698-9706. PubMed ID: 29762620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni/Ni
    Qin Q; Hao J; Zheng W
    ACS Appl Mater Interfaces; 2018 May; 10(21):17827-17834. PubMed ID: 29726676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-Assisted Synthesis of Colloidal Ni/NiO
    Lasemi N; Pacher U; Rentenberger C; Bomatí-Miguel O; Kautek W
    Chemphyschem; 2017 May; 18(9):1118-1124. PubMed ID: 28042935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition Metal Carbide Core/Shell Nanoparticles by Ultra-Short Laser Ablation in Liquid.
    De Bonis A; Curcio M; Santagata A; Galasso A; Teghil R
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin Oxide Layer-Wrapped Noble Metal Nanoparticles via Colloidal Electrostatic Self-Assembly for Efficient and Reusable Surface Enhanced Raman Scattering Substrates.
    Bao H; Zhang H; Zhou L; Liu G; Li Y; Cai W
    Langmuir; 2017 Nov; 33(45):12934-12942. PubMed ID: 29061051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple Synthesis and Characterization of Shell-Thickness-Controlled Ni/Ni
    Kim SW; Ro JC; Suh SJ
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent Influence on the Magnetization and Phase of Fe-Ni Alloy Nanoparticles Generated by Laser Ablation in Liquids.
    Khairani IY; Lin Q; Landers J; Salamon S; Doñate-Buendía C; Karapetrova E; Wende H; Zangari G; Gökce B
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36677981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications.
    Zhang J; Chaker M; Ma D
    J Colloid Interface Sci; 2017 Mar; 489():138-149. PubMed ID: 27554172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid.
    Yu Y; Jung HJ; Je M; Choi HC; Choi MY
    Chemosphere; 2016 Jul; 155():250-256. PubMed ID: 27129061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction.
    Gao WK; Chi JQ; Wang ZB; Lin JH; Liu DP; Zeng JB; Yu JF; Wang L; Chai YM; Dong B
    J Colloid Interface Sci; 2019 Mar; 537():11-19. PubMed ID: 30414504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles: toward Design of Advanced Electrocatalyst for Full Water Splitting.
    Davodi F; Mühlhausen E; Tavakkoli M; Sainio J; Jiang H; Gökce B; Marzun G; Kallio T
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31300-31311. PubMed ID: 30113811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles.
    Yoon SM; Choi WM; Baik H; Shin HJ; Song I; Kwon MS; Bae JJ; Kim H; Lee YH; Choi JY
    ACS Nano; 2012 Aug; 6(8):6803-11. PubMed ID: 22765296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Active and Selective Electrocatalytic CO
    Zhang J; Qiao M; Li Y; Shao Q; Huang X
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39722-39727. PubMed ID: 31609103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.
    LaGrow AP; Famiani S; Sergides A; Lari L; Lloyd DC; Takahashi M; Maenosono S; Boyes ED; Gai PL; Thanh NTK
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications.
    Zhang J; Claverie J; Chaker M; Ma D
    Chemphyschem; 2017 May; 18(9):986-1006. PubMed ID: 28164418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles.
    Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2009 May; 3(5):1077-84. PubMed ID: 19361203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst.
    Ma R; Zhou Y; Chen Y; Li P; Liu Q; Wang J
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14723-7. PubMed ID: 26474079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.