BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 31446073)

  • 1. Screening of acetylcholinesterase inhibitors and characterizing of phytochemical constituents from Dichocarpum auriculatum (Franch.) W.T. Wang & P. K. Hsiao through UPLC-MS combined with an acetylcholinesterase inhibition assay in vitro.
    Li P; Liu S; Liu Q; Shen J; Yang R; Jiang B; He C; Xiao P
    J Ethnopharmacol; 2019 Dec; 245():112185. PubMed ID: 31446073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.
    Zhao H; Zhou S; Zhang M; Feng J; Wang S; Wang D; Geng Y; Wang X
    J Pharm Biomed Anal; 2016 Feb; 120():235-40. PubMed ID: 26760241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolite Profiling Based on UPLC-Q-TOF-MS/MS and the Biological Evaluation of Medicinal Plants of Chinese Dichocarpum (Ranunculaceae).
    Li P; Shen J; Li Y; Yao H; Yu M; He C; Xiao P
    Chem Biodivers; 2021 Oct; 18(10):e2100432. PubMed ID: 34351062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques.
    Singh A; Bajpai V; Srivastava M; Arya KR; Kumar B
    Rapid Commun Mass Spectrom; 2014 Oct; 28(19):2089-100. PubMed ID: 25156599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous screening, identification, quantitation, and activity evaluation of six acetylcholinesterase (AChE) inhibitors in Coptidis Rhizoma by online UPLC-DAD coupled with AChE biochemical detection.
    Tan JL; Xu YL; Fei YQ; Zheng GH; Ding XP
    J Pharm Biomed Anal; 2022 Sep; 219():114897. PubMed ID: 35780528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracts from Traditional Chinese Medicinal Plants Inhibit Acetylcholinesterase, a Known Alzheimer's Disease Target.
    Kaufmann D; Kaur Dogra A; Tahrani A; Herrmann F; Wink M
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27589716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation.
    Yang Y; Cheng X; Liu W; Chou G; Wang Z; Wang C
    J Ethnopharmacol; 2015 Jun; 168():279-86. PubMed ID: 25862961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online screening of acetylcholinesterase inhibitors in natural products using monolith-based immobilized capillary enzyme reactors combined with liquid chromatography-mass spectrometry.
    Wang L; Zhao Y; Zhang Y; Zhang T; Kool J; Somsen GW; Wang Q; Jiang Z
    J Chromatogr A; 2018 Aug; 1563():135-143. PubMed ID: 29866504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolite Profiling by Hyphenated Liquid Chromatographic Mass Spectrometric Technique (HPLC-DAD-ESI-Q-TOF-MS/MS) and Neurobiological Potential of Haplophyllum sahinii and H. vulcanicum Extracts.
    Karahisar E; Tugay O; Orhan IE; Sezer Senol Deniz F; Vlad Luca S; Skalicka-Wozniak K; Sahin M
    Chem Biodivers; 2019 Sep; 16(9):e1900333. PubMed ID: 31365785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of alkaloids in Coptis chinensis Franch by accelerated solvent extraction combined with ultra performance liquid chromatographic analysis with photodiode array and tandem mass spectrometry detections.
    Chen J; Wang F; Liu J; Lee FS; Wang X; Yang H
    Anal Chim Acta; 2008 Apr; 613(2):184-95. PubMed ID: 18395058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UPLC-TOF-MS analysis of Galium spurium towards its neuroprotective and anticonvulsant activities.
    Orhan N; Deliorman Orhan D; Aslan M; Süküroğlu M; Orhan IE
    J Ethnopharmacol; 2012 May; 141(1):220-7. PubMed ID: 22348922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and in vitro metabolism and pharmacokinetics of cholinesterase inhibitor deoxyvasicine from aerial parts of Peganum harmala Linn in rats via UPLC-ESI-QTOF-MS and UPLC-ESI-MS/MS.
    Deng G; Liu W; Ma C; Rong X; Zhang Y; Wang Y; Wu C; Cao N; Ding W; Guan H; Cheng X; Wang C
    J Ethnopharmacol; 2019 May; 236():288-301. PubMed ID: 30872168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and sensitive detection of the inhibitive activities of acetyl- and butyryl-cholinesterases inhibitors by UPLC-ESI-MS/MS.
    Liu W; Yang Y; Cheng X; Gong C; Li S; He D; Yang L; Wang Z; Wang C
    J Pharm Biomed Anal; 2014 Jun; 94():215-20. PubMed ID: 24631841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem-leaf saponins using ultrafiltration (UF)-LC-ESI-MS
    Yang Y; Liang X; Jin P; Li N; Zhang Q; Yan W; Zhang H; Sun J
    Phytochem Anal; 2019 Jan; 30(1):26-33. PubMed ID: 30159954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of Hieronymiella species.
    Ortiz JE; Garro A; Pigni NB; Agüero MB; Roitman G; Slanis A; Enriz RD; Feresin GE; Bastida J; Tapia A
    Phytomedicine; 2018 Jan; 39():66-74. PubMed ID: 29433685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UPLC-PDA-ESI-QTOF-MS/MS fingerprint of purified flavonoid enriched fraction of
    Ogidigo JO; Anosike CA; Joshua PE; Ibeji CU; Ekpo DE; Nwanguma BC; Nwodo OFC
    Pharm Biol; 2021 Dec; 59(1):444-456. PubMed ID: 33930998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, in vitro evaluation and molecular docking of acetylcholinesterase inhibitors from South African Amaryllidaceae.
    Sibanyoni MN; Chaudhary SK; Chen W; Adhami HR; Combrinck S; Maharaj V; Schuster D; Viljoen A
    Fitoterapia; 2020 Oct; 146():104650. PubMed ID: 32479767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques.
    Ballesteros-Vivas D; Álvarez-Rivera G; Ibáñez E; Parada-Alfonso F; Cifuentes A
    J Chromatogr A; 2019 Jan; 1584():144-154. PubMed ID: 30579639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes.
    Bursal E; Aras A; Kılıç Ö; Taslimi P; Gören AC; Gülçin İ
    J Food Biochem; 2019 Mar; 43(3):e12776. PubMed ID: 31353544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive approach for screening acetylcholinesterase inhibition of water samples using ultra-performance liquid chromatography-tandem mass spectrometry.
    Li W; Qi Y; Gao C; Liu Y; Duan J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Feb; 1190():123101. PubMed ID: 35030473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.