These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31446115)

  • 1. Antlers - Evolution, development, structure, composition, and biomechanics of an outstanding type of bone.
    Landete-Castillejos T; Kierdorf H; Gomez S; Luna S; García AJ; Cappelli J; Pérez-Serrano M; Pérez-Barbería J; Gallego L; Kierdorf U
    Bone; 2019 Nov; 128():115046. PubMed ID: 31446115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenetic aspects of deer antler development.
    Li C; Suttie J
    Front Biosci (Elite Ed); 2012 Jan; 4(5):1836-42. PubMed ID: 22202000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improbable appendages: Deer antler renewal as a unique case of mammalian regeneration.
    Kierdorf U; Li C; Price JS
    Semin Cell Dev Biol; 2009 Jul; 20(5):535-42. PubMed ID: 19084608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of pedicle and hard antler bone in the European roe deer (Capreolus capreolus): a light microscope and backscattered electron imaging study.
    Kierdorf U; Flohr S; Gomez S; Landete-Castillejos T; Kierdorf H
    J Anat; 2013 Oct; 223(4):364-84. PubMed ID: 23961846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural aspects of cartilage formation, mineralization, and degeneration during primary antler growth in fallow deer (Dama dama).
    Szuwart T; Kierdorf H; Kierdorf U; Clemen G
    Ann Anat; 1998 Dec; 180(6):501-10. PubMed ID: 9862029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags-a quantitative X-ray fluorescence study.
    Kierdorf U; Stoffels D; Kierdorf H
    Biol Trace Elem Res; 2014 Dec; 162(1-3):124-33. PubMed ID: 25319008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoride content and mineralization of red deer (Cervus elaphus) antlers and pedicles from fluoride polluted and uncontaminated regions.
    Kierdorf U; Richards A; Sedlacek F; Kierdorf H
    Arch Environ Contam Toxicol; 1997 Feb; 32(2):222-7. PubMed ID: 9069201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological structure of antlers in castrated male fallow deer (Dama dama).
    Kierdorf U; Kierdorf H; Schultz M; Rolf HJ
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Dec; 281(2):1352-62. PubMed ID: 15523621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hard fallow deer antler: a living bone till antler casting?
    Rolf HJ; Enderle A
    Anat Rec; 1999 May; 255(1):69-77. PubMed ID: 10321994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antler regeneration: a dependent process of stem tissue primed via interaction with its enveloping skin.
    Li C; Yang F; Li G; Gao X; Xing X; Wei H; Deng X; Clark DE
    J Exp Zool A Ecol Genet Physiol; 2007 Feb; 307(2):95-105. PubMed ID: 17177282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative RNA-seq.
    Ker DFE; Wang D; Sharma R; Zhang B; Passarelli B; Neff N; Li C; Maloney W; Quake S; Yang YP
    Stem Cell Res Ther; 2018 Oct; 9(1):292. PubMed ID: 30376879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pedicle and antler regeneration following antlerogenic tissue removal in red deer (Cervus elaphus).
    Li C; Suttie JM
    J Exp Zool; 1994 May; 269(1):37-44. PubMed ID: 8207380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue differentiation and correlated changes in enzymatic activities during primary antler development in fallow deer (Dama dama).
    Szuwart T; Kierdorf H; Kierdorf U; Althoff J; Clemen G
    Anat Rec; 1995 Dec; 243(4):413-20. PubMed ID: 8597287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiquity and fundamental processes of the antler cycle in Cervidae (Mammalia).
    Rössner GE; Costeur L; Scheyer TM
    Naturwissenschaften; 2020 Dec; 108(1):3. PubMed ID: 33326046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study.
    Kierdorf U; Kierdorf H; Boyde A
    J Anat; 2000 Jan; 196 ( Pt 1)(Pt 1):71-83. PubMed ID: 10697290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of key tissue type for antler regeneration through pedicle periosteum deletion.
    Li C; Mackintosh CG; Martin SK; Clark DE
    Cell Tissue Res; 2007 Apr; 328(1):65-75. PubMed ID: 17120051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histological studies of bone formation during pedicle restoration and early antler regeneration in roe deer and fallow deer.
    Kierdorf U; Stoffels E; Stoffels D; Kierdorf H; Szuwart T; Clemen G
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):741-51. PubMed ID: 12845710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution, structure, and mineralization of calcified cartilage remnants in hard antlers.
    Kierdorf U; Stock SR; Gomez S; Antipova O; Kierdorf H
    Bone Rep; 2022 Jun; 16():101571. PubMed ID: 35519288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deer antlers as a model of Mammalian regeneration.
    Price J; Faucheux C; Allen S
    Curr Top Dev Biol; 2005; 67():1-48. PubMed ID: 15949530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration strategy inspired by the study of calcification behavior in deer antler.
    Shi H; Yu T; Li Z; Lu W; Zhang M; Ye J
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():67-76. PubMed ID: 26354241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.