These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31446116)

  • 1. Strain rate dependence of work of fracture tests on bone and similar tissues: Reflections on testing methods and mineral content effects.
    Currey JD; Brear K; Zioupos P
    Bone; 2019 Nov; 128():115038. PubMed ID: 31446116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis).
    Chen PY; Stokes AG; McKittrick J
    Acta Biomater; 2009 Feb; 5(2):693-706. PubMed ID: 18951859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of strain rate on the failure stress and toughness of bone of different mineral densities.
    Wallace RJ; Pankaj P; Simpson AH
    J Biomech; 2013 Sep; 46(13):2283-7. PubMed ID: 23870507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical properties of the dentine and cement of the tusk of the narwhal Monodon monoceros compared with those of other mineralized tissues.
    Brear K; Currey JD; Pond CM; Ramsay MA
    Arch Oral Biol; 1990; 35(8):615-21. PubMed ID: 2256815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of age and loading rate on equine cortical bone failure.
    Kulin RM; Jiang F; Vecchio KS
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):57-75. PubMed ID: 21094480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of inner mechanism of anisotropic mechanical property of antler bone.
    Fang Z; Chen B; Lin S; Ye W; Xiao H; Chen X
    J Mech Behav Biomed Mater; 2018 Dec; 88():1-10. PubMed ID: 30114597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fracture toughness of human bone under tension.
    Norman TL; Vashishth D; Burr DB
    J Biomech; 1995 Mar; 28(3):309-20. PubMed ID: 7730389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic aspects of the fracture toughness of elk antler bone.
    Launey ME; Chen PY; McKittrick J; Ritchie RO
    Acta Biomater; 2010 Apr; 6(4):1505-14. PubMed ID: 19941980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain rate dependence of the mechanical properties of reindeer antler and the cumulative damage model of bone fracture.
    Currey JD
    J Biomech; 1989; 22(5):469-75. PubMed ID: 2777821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone.
    Unger S; Blauth M; Schmoelz W
    Bone; 2010 Dec; 47(6):1048-53. PubMed ID: 20736094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creep fracture in bones with different stiffnesses.
    Mauch M; Currey JD; Sedman AJ
    J Biomech; 1992 Jan; 25(1):11-6. PubMed ID: 1733979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study.
    Kierdorf U; Kierdorf H; Boyde A
    J Anat; 2000 Jan; 196 ( Pt 1)(Pt 1):71-83. PubMed ID: 10697290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness of bovine bone: influence of orientation and storage media.
    Lucksanasombool P; Higgs WA; Higgs RJ; Swain MV
    Biomaterials; 2001 Dec; 22(23):3127-32. PubMed ID: 11603584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antler stiffness in moose (Alces alces): correlated evolution of bone function and material properties?
    Blob RW; Snelgrove JM
    J Morphol; 2006 Sep; 267(9):1075-86. PubMed ID: 16752424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a compact sandwich specimen to evaluate fracture toughness and interfacial bonding of bone.
    Wang X; Lankford J; Agrawal CM
    J Appl Biomater; 1994; 5(4):315-23. PubMed ID: 8580538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antler stiffness in caribou (Rangifer tarandus): testing variation in bone material properties between males and females.
    Shah SR; DesJardins JD; Blob RW
    Zoology (Jena); 2008; 111(6):476-82. PubMed ID: 18639448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of bone remodelling around immediately loaded dental implants using sika deer (Cervus nippon) antlers as implant bed.
    He Y; Hasan I; Keilig L; Fischer D; Ziegler L; Abboud M; Wahl G; Bourauel C
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):359-369. PubMed ID: 29658297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.