These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31446271)
1. The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. Huang L; Wang W; Shah SB; Hu H; Xu P; Tang H J Hazard Mater; 2019 Dec; 380():120833. PubMed ID: 31446271 [TBL] [Abstract][Full Text] [Related]
2. Hexabromocyclododecanes Are Dehalogenated by CYP168A1 from Huang L; Wang W; Zanaroli G; Xu P; Tang H Appl Environ Microbiol; 2021 Aug; 87(17):e0082621. PubMed ID: 34132585 [TBL] [Abstract][Full Text] [Related]
3. Microbial debromination of hexabromocyclododecanes. Yu F; Li Y; Wang H; Peng T; Wu YR; Hu Z Appl Microbiol Biotechnol; 2021 Jun; 105(11):4535-4550. PubMed ID: 34076715 [TBL] [Abstract][Full Text] [Related]
4. Isolation of Pseudomonas sp. strain HB01 which degrades the persistent brominated flame retardant gamma-hexabromocyclododecane. Yamada T; Takahama Y; Yamada Y Biosci Biotechnol Biochem; 2009 Jul; 73(7):1674-8. PubMed ID: 19584526 [TBL] [Abstract][Full Text] [Related]
5. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants. Li Y; Zhou Q; Wang Y; Xie X Chemosphere; 2011 Jan; 82(2):204-9. PubMed ID: 21051070 [TBL] [Abstract][Full Text] [Related]
6. Effects of the amendment of biochars and carbon nanotubes on the bioavailability of hexabromocyclododecanes (HBCDs) in soil to ecologically different species of earthworms. Li B; Zhu H; Sun H; Xu J Environ Pollut; 2017 Mar; 222():191-200. PubMed ID: 28057373 [TBL] [Abstract][Full Text] [Related]
8. Transformation of HBCDs by Rhodococcus sp. stu-38. Yu F; Luo W; Li Y; Meng S; Lin X; Li L; Ye X; Wang H; Peng T; Huang T; Hu Z Curr Microbiol; 2022 May; 79(7):200. PubMed ID: 35596087 [TBL] [Abstract][Full Text] [Related]
10. Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China: occurrence, diastereomer- and enantiomer-specific profiles, and metabolization. Huang H; Wang D; Wan W; Wen B Environ Sci Pollut Res Int; 2017 Sep; 24(27):21625-21635. PubMed ID: 28752306 [TBL] [Abstract][Full Text] [Related]
11. Occurrence, sources, and inventory of hexabromocyclododecanes (HBCDs) in soils from Chongming Island, the Yangtze River Delta (YRD). Meng XZ; Duan YP; Yang C; Pan ZY; Wen ZH; Chen L Chemosphere; 2011 Jan; 82(5):725-31. PubMed ID: 21111446 [TBL] [Abstract][Full Text] [Related]
12. Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. Le TT; Son MH; Nam IH; Yoon H; Kang YG; Chang YS J Hazard Mater; 2017 Mar; 325():82-89. PubMed ID: 27915102 [TBL] [Abstract][Full Text] [Related]
13. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure. Zhang Y; Sun H; Liu F; Dai Y; Qin X; Ruan Y; Zhao L; Gan Z Chemosphere; 2013 Nov; 93(8):1561-8. PubMed ID: 24007617 [TBL] [Abstract][Full Text] [Related]
14. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies. Huang H; Wang D; Wen B; Lv J; Zhang S Sci Total Environ; 2019 Mar; 656():364-372. PubMed ID: 30513427 [TBL] [Abstract][Full Text] [Related]
15. Diastereomer- and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms. Li B; Yao T; Sun H; Zhang Y; Yang J Sci Total Environ; 2016 Jan; 542(Pt A):427-34. PubMed ID: 26520267 [TBL] [Abstract][Full Text] [Related]
16. The potential of enhanced phytoremediation to clean up multi-contaminated soil - insights from metatranscriptomics. Pacwa-Płociniczak M; Kumor A; Bukowczan M; Sinkkonen A; Roslund M; Płociniczak T Microbiol Res; 2024 Jul; 284():127738. PubMed ID: 38692035 [TBL] [Abstract][Full Text] [Related]
17. The enantiomer-selective metabolism of hexabromocyclododecanes (HBCDs) by human HepG2 cells. Wang XS; Tan X; Zhang Y; Hu XX; Shen C; Huang YY; Fu HL; Yu RH; He CT Sci Total Environ; 2021 May; 768():144430. PubMed ID: 33736337 [TBL] [Abstract][Full Text] [Related]
18. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China. Li H; Hu Y; Sun Y; De Silva AO; Muir DCG; Wang W; Xie J; Xu X; Pei N; Xiong Y; Luo X; Mai B Environ Int; 2019 Aug; 129():239-246. PubMed ID: 31146158 [TBL] [Abstract][Full Text] [Related]
19. Experimental and Theoretical Evidence for Diastereomer- and Enantiomer-Specific Accumulation and Biotransformation of HBCD in Maize Roots. Huang H; Zhang S; Lv J; Wen B; Wang S; Wu T Environ Sci Technol; 2016 Nov; 50(22):12205-12213. PubMed ID: 27741390 [TBL] [Abstract][Full Text] [Related]
20. Biotransformation of HBCDs by the microbial communities enriched from mangrove sediments. Yu F; Zhang B; Liu Y; Luo W; Chen H; Gao J; Ye X; Li J; Xie Q; Peng T; Wang H; Huang T; Hu Z J Hazard Mater; 2024 May; 469():134036. PubMed ID: 38493623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]