BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31446522)

  • 1. 4D modelling of fluid mechanics in the zebrafish embryonic heart.
    Foo YY; Pant S; Tay HS; Imangali N; Chen N; Winkler C; Yap CH
    Biomech Model Mechanobiol; 2020 Feb; 19(1):221-232. PubMed ID: 31446522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organ Dynamics and Fluid Dynamics of the HH25 Chick Embryonic Cardiac Ventricle as Revealed by a Novel 4D High-Frequency Ultrasound Imaging Technique and Computational Flow Simulations.
    Ho S; Tan GXY; Foo TJ; Phan-Thien N; Yap CH
    Ann Biomed Eng; 2017 Oct; 45(10):2309-2323. PubMed ID: 28744840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.
    Lee J; Moghadam ME; Kung E; Cao H; Beebe T; Miller Y; Roman BL; Lien CL; Chi NC; Marsden AL; Hsiai TK
    PLoS One; 2013; 8(8):e72924. PubMed ID: 24009714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans.
    Wiputra H; Lai CQ; Lim GL; Heng JJ; Guo L; Soomar SM; Leo HL; Biwas A; Mattar CN; Yap CH
    Am J Physiol Heart Circ Physiol; 2016 Dec; 311(6):H1498-H1508. PubMed ID: 27663769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacement Analysis of Myocardial Mechanical Deformation (DIAMOND) Reveals Segmental Heterogeneity of Cardiac Function in Embryonic Zebrafish.
    Chen J; Packard RRS
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid dynamics and forces in the HH25 avian embryonic outflow tract.
    Ho S; Chan WX; Rajesh S; Phan-Thien N; Yap CH
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1123-1137. PubMed ID: 30810888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid dynamics of ventricular filling in the embryonic heart.
    Miller LA
    Cell Biochem Biophys; 2011 Sep; 61(1):33-45. PubMed ID: 21336589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ Dynamics and Hemodynamic of the Whole HH25 Avian Embryonic Heart, Revealed by Ultrasound Biomicroscopy, Boundary Tracking, and Flow Simulations.
    Ho S; Chan WX; Phan-Thien N; Yap CH
    Sci Rep; 2019 Dec; 9(1):18072. PubMed ID: 31792224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid mechanics of the zebrafish embryonic heart trabeculation.
    Cairelli AG; Chow RW; Vermot J; Yap CH
    PLoS Comput Biol; 2022 Jun; 18(6):e1010142. PubMed ID: 35666714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness.
    Sharifi A; Gendernalik A; Garrity D; Bark D
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extended pharmacological disruption of zebrafish embryonic heart biomechanical environment on cardiac function, morphology, and gene expression.
    Foo YY; Motakis E; Tiang Z; Shen S; Lai JKH; Chan WX; Wiputra H; Chen N; Chen CK; Winkler C; Foo RSY; Yap CH
    Dev Dyn; 2021 Dec; 250(12):1759-1777. PubMed ID: 34056790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.
    Boselli F; Vermot J
    Methods; 2016 Feb; 94():129-34. PubMed ID: 26390811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.
    Bark DL; Johnson B; Garrity D; Dasi LP
    J Biomech; 2017 Jan; 50():50-55. PubMed ID: 27887729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transition point for the blood flow wall shear stress environment in the human fetal left ventricle during early gestation.
    Wiputra H; Lim M; Yap CH
    J Biomech; 2021 May; 120():110353. PubMed ID: 33730564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The embryonic vertebrate heart tube is a dynamic suction pump.
    Forouhar AS; Liebling M; Hickerson A; Nasiraei-Moghaddam A; Tsai HJ; Hove JR; Fraser SE; Dickinson ME; Gharib M
    Science; 2006 May; 312(5774):751-3. PubMed ID: 16675702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modelling for the spiral flow in umbilical arteries with different systole/diastole flow velocity ratios.
    Wen J; Tang J; Ran S; Ho H
    Med Eng Phys; 2020 Oct; 84():96-102. PubMed ID: 32977927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart.
    Poelma C; Van der Heiden K; Hierck BP; Poelmann RE; Westerweel J
    J R Soc Interface; 2010 Jan; 7(42):91-103. PubMed ID: 19401309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peristaltic-Like Motion of the Human Fetal Right Ventricle and its Effects on Fluid Dynamics and Energy Dynamics.
    Wiputra H; Lim GL; Chua KC; Nivetha R; Soomar SM; Biwas A; Mattar CNZ; Leo HL; Yap CH
    Ann Biomed Eng; 2017 Oct; 45(10):2335-2347. PubMed ID: 28721492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.
    Muehlhausen MP; Janoske U; Oertel H
    Cardiovasc Eng Technol; 2015 Mar; 6(1):8-18. PubMed ID: 26577098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.