BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31446522)

  • 21. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics.
    Goenezen S; Chivukula VK; Midgett M; Phan L; Rugonyi S
    Biomech Model Mechanobiol; 2016 Jun; 15(3):723-43. PubMed ID: 26361767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation.
    Lee J; Vedula V; Baek KI; Chen J; Hsu JJ; Ding Y; Chang CC; Kang H; Small A; Fei P; Chuong CM; Li R; Demer L; Packard RRS; Marsden AL; Hsiai TK
    JCI Insight; 2018 Jul; 3(13):. PubMed ID: 29997298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of left atrial ligation-driven altered inflow hemodynamics on embryonic heart development: clues for prenatal progression of hypoplastic left heart syndrome.
    Salman HE; Alser M; Shekhar A; Gould RA; Benslimane FM; Butcher JT; Yalcin HC
    Biomech Model Mechanobiol; 2021 Apr; 20(2):733-750. PubMed ID: 33481120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation.
    Hsu JJ; Vedula V; Baek KI; Chen C; Chen J; Chou MI; Lam J; Subhedar S; Wang J; Ding Y; Chang CC; Lee J; Demer LL; Tintut Y; Marsden AL; Hsiai TK
    JCI Insight; 2019 Apr; 5(10):. PubMed ID: 30973827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human fetal hearts with tetralogy of Fallot have altered fluid dynamics and forces.
    Wiputra H; Chen CK; Talbi E; Lim GL; Soomar SM; Biswas A; Mattar CNZ; Bark D; Leo HL; Yap CH
    Am J Physiol Heart Circ Physiol; 2018 Dec; 315(6):H1649-H1659. PubMed ID: 30216114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ventricular motion during the ejection phase: a computational analysis.
    Redaelli A; Maisano F; Schreuder JJ; Montevecchi FM
    J Appl Physiol (1985); 2000 Jul; 89(1):314-22. PubMed ID: 10904067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational fluid dynamics characterization of pulsatile flow in central and Sano shunts connected to the pulmonary arteries: importance of graft angulation on shear stress-induced, platelet-mediated thrombosis.
    Ascuitto R; Ross-Ascuitto N; Guillot M; Celestin C
    Interact Cardiovasc Thorac Surg; 2017 Sep; 25(3):414-421. PubMed ID: 28525548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube.
    Taber LA; Zhang J; Perucchio R
    J Biomech Eng; 2007 Jun; 129(3):441-9. PubMed ID: 17536912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo wall shear measurements within the developing zebrafish heart.
    Jamison RA; Samarage CR; Bryson-Richardson RJ; Fouras A
    PLoS One; 2013; 8(10):e75722. PubMed ID: 24124507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluid mechanics of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome.
    Ho S; Chan WX; Yap CH
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1337-1351. PubMed ID: 33774755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans.
    Lai CQ; Lim GL; Jamil M; Mattar CN; Biswas A; Yap CH
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1159-72. PubMed ID: 26676944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardiac-phase filtering in intracardiac particle image velocimetry.
    Jamison RA; Fouras A; Bryson-Richardson RJ
    J Biomed Opt; 2012 Mar; 17(3):036007. PubMed ID: 22502565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.
    Chen CY; Patrick MJ; Corti P; Kowalski W; Roman BL; Pekkan K
    Biorheology; 2011; 48(5):305-21. PubMed ID: 22433571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a System for Measuring Wall Shear Stress in Blood Vessels using Magnetic Resonance Imaging and Computational Fluid Dynamics.
    Yoshida K; Nagao T; Okada K; Miyazaki S; Yang X; Yamazaki Y; Murase K
    Igaku Butsuri; 2008; 27(3):136-49. PubMed ID: 18367824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart.
    Boselli F; Steed E; Freund JB; Vermot J
    Development; 2017 Dec; 144(23):4322-4327. PubMed ID: 29183943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Torsional motion of the left ventricle does not affect ventricular fluid dynamics of both foetal and adult hearts.
    Vasudevan V; Wiputra H; Yap CH
    J Biomech; 2019 Nov; 96():109357. PubMed ID: 31635847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.