BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31446640)

  • 1. Allogeneic stem cell transplantation in patients with myelofibrosis harboring the MPL mutation.
    Mannina D; Gagelmann N; Badbaran A; Ditschkowski M; Bogdanov R; Robin M; Cassinat B; Heuser M; Shahswar R; Thol F; Beelen D; Kröger N
    Eur J Haematol; 2019 Dec; 103(6):552-557. PubMed ID: 31446640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplant Decisions in Patients with Myelofibrosis: Should Mutations Be the Judge?
    Salit RB; Deeg HJ
    Biol Blood Marrow Transplant; 2018 Apr; 24(4):649-658. PubMed ID: 29128551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons.
    Tefferi A; Lasho TL; Finke CM; Knudson RA; Ketterling R; Hanson CH; Maffioli M; Caramazza D; Passamonti F; Pardanani A
    Leukemia; 2014 Jul; 28(7):1472-7. PubMed ID: 24402162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Molecular Genetics on Outcome in Myelofibrosis Patients after Allogeneic Stem Cell Transplantation.
    Kröger N; Panagiota V; Badbaran A; Zabelina T; Triviai I; Araujo Cruz MM; Shahswar R; Ayuk F; Gehlhaar M; Wolschke C; Bollin R; Walter C; Dugas M; Wiehlmann L; Lehmann U; Koenecke C; Chaturvedi A; Alchalby H; Stadler M; Eder M; Christopeit M; Göhring G; Koenigsmann M; Schlegelberger B; Kreipe HH; Ganser A; Stocking C; Fehse B; Thol F; Heuser M
    Biol Blood Marrow Transplant; 2017 Jul; 23(7):1095-1101. PubMed ID: 28389256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concomitant and noncanonical JAK2 and MPL mutations in JAK2V617F- and MPLW515 L-positive myelofibrosis.
    Schulze S; Stengel R; Jaekel N; Wang SY; Franke GN; Roskos M; Schneider M; Niederwieser D; Al-Ali HK
    Genes Chromosomes Cancer; 2019 Nov; 58(11):747-755. PubMed ID: 31135094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms.
    Martínez-Avilés L; Besses C; Álvarez-Larrán A; Torres E; Serrano S; Bellosillo B
    Ann Hematol; 2012 Apr; 91(4):533-41. PubMed ID: 21904853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatic mutations of calreticulin in myeloproliferative neoplasms.
    Klampfl T; Gisslinger H; Harutyunyan AS; Nivarthi H; Rumi E; Milosevic JD; Them NC; Berg T; Gisslinger B; Pietra D; Chen D; Vladimer GI; Bagienski K; Milanesi C; Casetti IC; Sant'Antonio E; Ferretti V; Elena C; Schischlik F; Cleary C; Six M; Schalling M; Schönegger A; Bock C; Malcovati L; Pascutto C; Superti-Furga G; Cazzola M; Kralovics R
    N Engl J Med; 2013 Dec; 369(25):2379-90. PubMed ID: 24325356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational profiling in myelofibrosis: implications for management.
    Bose P; Verstovsek S
    Int J Hematol; 2020 Feb; 111(2):192-199. PubMed ID: 31630335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera.
    Delic S; Rose D; Kern W; Nadarajah N; Haferlach C; Haferlach T; Meggendorfer M
    Br J Haematol; 2016 Nov; 175(3):419-426. PubMed ID: 27447873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prognostic contribution of CBL, NRAS, KRAS, RUNX1, and TP53 mutations to mutation-enhanced international prognostic score systems (MIPSS70/plus/plus v2.0) for primary myelofibrosis.
    Loscocco GG; Rotunno G; Mannelli F; Coltro G; Gesullo F; Pancani F; Signori L; Maccari C; Esposito M; Paoli C; Vannucchi AM; Guglielmelli P
    Am J Hematol; 2024 Jan; 99(1):68-78. PubMed ID: 37846894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SRSF2 and U2AF1 mutations in primary myelofibrosis are associated with JAK2 and MPL but not calreticulin mutation and may independently reoccur after allogeneic stem cell transplantation.
    Bartels S; Lehmann U; Büsche G; Schlue J; Mozer M; Stadler J; Triviai I; Alchalby H; Kröger N; Kreipe H
    Leukemia; 2015 Jan; 29(1):253-5. PubMed ID: 25231745
    [No Abstract]   [Full Text] [Related]  

  • 12. Clinical impacts of the mutational spectrum in Japanese patients with primary myelofibrosis.
    Morishita S; Ochiai T; Misawa K; Osaga S; Inano T; Fukuda Y; Edahiro Y; Ohsaka A; Araki M; Komatsu N
    Int J Hematol; 2021 Apr; 113(4):500-507. PubMed ID: 33389584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CALR mutation screening in pediatric primary myelofibrosis.
    An W; Wan Y; Guo Y; Chen X; Ren Y; Zhang J; Chang L; Wei W; Zhang P; Zhu X
    Pediatr Blood Cancer; 2014 Dec; 61(12):2256-62. PubMed ID: 25176567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management.
    Tefferi A
    Am J Hematol; 2021 Jan; 96(1):145-162. PubMed ID: 33197049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis.
    Rozovski U; Verstovsek S; Manshouri T; Dembitz V; Bozinovic K; Newberry K; Zhang Y; Bove JE; Pierce S; Kantarjian H; Estrov Z
    Haematologica; 2017 Jan; 102(1):79-84. PubMed ID: 27686378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Array comparative genomic hybridization and sequencing of 23 genes in 80 patients with myelofibrosis at chronic or acute phase.
    Brecqueville M; Rey J; Devillier R; Guille A; Gillet R; Adélaide J; Gelsi-Boyer V; Arnoulet C; Chaffanet M; Mozziconacci MJ; Vey N; Birnbaum D; Murati A
    Haematologica; 2014 Jan; 99(1):37-45. PubMed ID: 23996481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations and prognosis in primary myelofibrosis.
    Vannucchi AM; Lasho TL; Guglielmelli P; Biamonte F; Pardanani A; Pereira A; Finke C; Score J; Gangat N; Mannarelli C; Ketterling RP; Rotunno G; Knudson RA; Susini MC; Laborde RR; Spolverini A; Pancrazzi A; Pieri L; Manfredini R; Tagliafico E; Zini R; Jones A; Zoi K; Reiter A; Duncombe A; Pietra D; Rumi E; Cervantes F; Barosi G; Cazzola M; Cross NC; Tefferi A
    Leukemia; 2013 Sep; 27(9):1861-9. PubMed ID: 23619563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broad Next-Generation Integrated Sequencing of Myelofibrosis Identifies Disease-Specific and Age-Related Genomic Alterations.
    Kandarpa M; Robinson D; Wu YM; Qin T; Pettit K; Li Q; Luker G; Sartor M; Chinnaiyan A; Talpaz M
    Clin Cancer Res; 2024 May; 30(9):1972-1983. PubMed ID: 38386293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond.
    Michiels JJ; Berneman Z; Schroyens W; De Raeve H
    Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms.
    Brecqueville M; Rey J; Bertucci F; Coppin E; Finetti P; Carbuccia N; Cervera N; Gelsi-Boyer V; Arnoulet C; Gisserot O; Verrot D; Slama B; Vey N; Mozziconacci MJ; Birnbaum D; Murati A
    Genes Chromosomes Cancer; 2012 Aug; 51(8):743-55. PubMed ID: 22489043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.