These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31446832)

  • 1. Translational control of muscle mass.
    Dupont-Versteegden EE; McCarthy JJ
    J Appl Physiol (1985); 2019 Aug; 127(2):579-580. PubMed ID: 31446832
    [No Abstract]   [Full Text] [Related]  

  • 2. What is the relationship between the acute muscle protein synthesis response and changes in muscle mass?
    Mitchell CJ; Churchward-Venne TA; Cameron-Smith D; Phillips SM
    J Appl Physiol (1985); 2015 Feb; 118(4):495-7. PubMed ID: 25257869
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular mechanisms responsible for alcohol-induced myopathy in skeletal muscle and heart.
    Lang CH; Frost RA; Summer AD; Vary TC
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2180-95. PubMed ID: 15982919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle.
    Ríos E; Figueroa L; Manno C; Kraeva N; Riazi S
    J Gen Physiol; 2015 Jun; 145(6):459-74. PubMed ID: 26009541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sweetening the pot in muscle: genetic defects of protein glycosylation causing muscle disease.
    Karpati G; Holland P
    Neurology; 2002 Dec; 59(11):1674-6. PubMed ID: 12473751
    [No Abstract]   [Full Text] [Related]  

  • 6. Translational Control of the Myogenic Program in Developing, Regenerating, and Diseased Skeletal Muscle.
    Fujita R; Crist C
    Curr Top Dev Biol; 2018; 126():67-98. PubMed ID: 29305004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in muscle research.
    Sanger JM; Sanger JW
    Anat Rec (Hoboken); 2014 Sep; 297(9):1539-42. PubMed ID: 25125167
    [No Abstract]   [Full Text] [Related]  

  • 8. The ubiquitin-dependent proteolytic pathway in skeletal muscle: its role in pathological states.
    Argilés JM; López-Soriano FJ
    Trends Pharmacol Sci; 1996 Jun; 17(6):223-6. PubMed ID: 8763200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
    Bohnert KR; McMillan JD; Kumar A
    J Cell Physiol; 2018 Jan; 233(1):67-78. PubMed ID: 28177127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The influence of small doses of exogenic nitrite on oxidative modifications of water-soluble proteins of rat cardiac and skeletal muscle].
    Kuleva NV; Krasovskaia IE; Shumilova TE
    Biofizika; 2014; 59(5):848-53. PubMed ID: 25730964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation.
    von Walden F
    J Appl Physiol (1985); 2019 Aug; 127(2):591-598. PubMed ID: 31219775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 121st ENMC International Workshop on Desmin and Protein Aggregate Myopathies. 7-9 November 2003, Naarden, The Netherlands.
    Goebel H; Fardeau M
    Neuromuscul Disord; 2004 Nov; 14(11):767-73. PubMed ID: 15482963
    [No Abstract]   [Full Text] [Related]  

  • 13. Skeletal muscle physiology.
    Guimarães-Ferreira L; Nicastro H; Wilson J; Zanchi NE
    ScientificWorldJournal; 2013; 2013():782352. PubMed ID: 23844411
    [No Abstract]   [Full Text] [Related]  

  • 14. Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size.
    Chaillou T
    J Appl Physiol (1985); 2019 Aug; 127(2):599-607. PubMed ID: 30605395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyroid (neuro)myopathy.
    Klein I; Ojamaa K
    Lancet; 2000 Aug; 356(9230):614. PubMed ID: 10968432
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanotransduction and the regulation of protein synthesis in skeletal muscle.
    Hornberger TA; Esser KA
    Proc Nutr Soc; 2004 May; 63(2):331-5. PubMed ID: 15294051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of functional overloading on the regenerative potential of injured skeletal muscles in mice.
    Goto K; Morioka S; Naito T; Akema T; Matsuba Y; Sugiura T; Ohira Y; Yoshioka T
    J Gravit Physiol; 2007 Jul; 14(1):P101-2. PubMed ID: 18372719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and cellular defects of skeletal muscle in an animal model of acute quadriplegic myopathy.
    Mozaffar T; Haddad F; Zeng M; Zhang LY; Adams GR; Baldwin KM
    Muscle Nerve; 2007 Jan; 35(1):55-65. PubMed ID: 16967495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preserving muscle health and wellbeing for long-term cancer survivors.
    Moylan JS
    J Physiol; 2015 Apr; 593(8):1767-8. PubMed ID: 25871558
    [No Abstract]   [Full Text] [Related]  

  • 20. Translational control of protein synthesis: implications for understanding changes in skeletal muscle mass.
    Jefferson LS; Kimball SR
    Int J Sport Nutr Exerc Metab; 2001 Dec; 11 Suppl():S143-9. PubMed ID: 11915913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.