These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31447628)

  • 1. Streaming Batch Eigenupdates for Hardware Neural Networks.
    Hoskins BD; Daniels MW; Huang S; Madhavan A; Adam GC; Zhitenev N; McClelland JJ; Stiles MD
    Front Neurosci; 2019; 13():793. PubMed ID: 31447628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient Decomposition Methods for Training Neural Networks With Non-ideal Synaptic Devices.
    Zhao J; Huang S; Yousuf O; Gao Y; Hoskins BD; Adam GC
    Front Neurosci; 2021; 15():749811. PubMed ID: 34880721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training memristor-based multilayer neuromorphic networks with SGD, momentum and adaptive learning rates.
    Yan Z; Chen J; Hu R; Huang T; Chen Y; Wen S
    Neural Netw; 2020 Aug; 128():142-149. PubMed ID: 32446191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware.
    Rostami A; Vogginger B; Yan Y; Mayr CG
    Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low Complexity Gradient Computation Techniques to Accelerate Deep Neural Network Training.
    Shin D; Kim G; Jo J; Park J
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5745-5759. PubMed ID: 34890336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thousands of conductance levels in memristors integrated on CMOS.
    Rao M; Tang H; Wu J; Song W; Zhang M; Yin W; Zhuo Y; Kiani F; Chen B; Jiang X; Liu H; Chen HY; Midya R; Ye F; Jiang H; Wang Z; Wu M; Hu M; Wang H; Xia Q; Ge N; Li J; Yang JJ
    Nature; 2023 Mar; 615(7954):823-829. PubMed ID: 36991190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of mathematical morphology operation with memristor-based computation-in-memory architecture for detecting manufacturing defects.
    Zhou Y; Gao B; Zhang Q; Yao P; Geng Y; Li X; Sun W; Zhao M; Xi Y; Tang J; Qian H; Wu H
    Fundam Res; 2022 Jan; 2(1):123-130. PubMed ID: 38933903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating deep neural network training with inconsistent stochastic gradient descent.
    Wang L; Yang Y; Min R; Chakradhar S
    Neural Netw; 2017 Sep; 93():219-229. PubMed ID: 28668660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Memristors-Based Dendritic Neuron for High-Efficiency Spatial-Temporal Information Processing.
    Li X; Zhong Y; Chen H; Tang J; Zheng X; Sun W; Li Y; Wu D; Gao B; Hu X; Qian H; Wu H
    Adv Mater; 2023 Sep; 35(37):e2203684. PubMed ID: 35735048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical memristive neural networks and associative self-learning architectures using biomimetic devices.
    Zivasatienraj B; Doolittle WA
    Front Neurosci; 2023; 17():1153183. PubMed ID: 37152603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating DNN Training Through Selective Localized Learning.
    Krithivasan S; Sen S; Venkataramani S; Raghunathan A
    Front Neurosci; 2021; 15():759807. PubMed ID: 35087370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully hardware-implemented memristor convolutional neural network.
    Yao P; Wu H; Gao B; Tang J; Zhang Q; Zhang W; Yang JJ; Qian H
    Nature; 2020 Jan; 577(7792):641-646. PubMed ID: 31996818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capacity, Fidelity, and Noise Tolerance of Associative Spatial-Temporal Memories Based on Memristive Neuromorphic Networks.
    Gavrilov D; Strukov D; Likharev KK
    Front Neurosci; 2018; 12():195. PubMed ID: 29643761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Learning-Rate Modulable and Reliable TiO
    Jang J; Gi S; Yeo I; Choi S; Jang S; Ham S; Lee B; Wang G
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201117. PubMed ID: 35666073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memristor-based LSTM network with in situ training and its applications.
    Liu X; Zeng Z; Wunsch Ii DC
    Neural Netw; 2020 Nov; 131():300-311. PubMed ID: 32841836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Memristor-Based Crossbar Synapse for Neuromorphic Systems.
    Kim B; Jo S; Sun W; Shin H
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6703-6709. PubMed ID: 31027014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities.
    Pietrzak P; Szczęsny S; Huderek D; Przyborowski Ł
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.