These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 31447955)
21. Probing Contact Electrification: A Cohesively Sticky Problem. Sherrell PC; Sutka A; Shepelin NA; Lapcinskis L; Verners O; Germane L; Timusk M; Fenati RA; Malnieks K; Ellis AV ACS Appl Mater Interfaces; 2021 Sep; 13(37):44935-44947. PubMed ID: 34498850 [TBL] [Abstract][Full Text] [Related]
22. Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Xie L; Zhai N; Liu Y; Wen Z; Sun X Research (Wash D C); 2021; 2021():9143762. PubMed ID: 33728411 [TBL] [Abstract][Full Text] [Related]
24. Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Shen J; Li B; Yang Y; Yang Z; Liu X; Lim KC; Chen J; Ji L; Lin ZH; Cheng J Biosens Bioelectron; 2022 Nov; 216():114595. PubMed ID: 35973278 [TBL] [Abstract][Full Text] [Related]
25. The Integration of Triboelectric Nanogenerators and Supercapacitors: The Key Role of Cellular Materials. Meng J; Zhao Z; Cao X; Wang N Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241378 [TBL] [Abstract][Full Text] [Related]
26. Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure. Wang CJ; Meng F; Fu Q; Fan CH; Cui L Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295972 [TBL] [Abstract][Full Text] [Related]
27. Lightweight mobile stick-type water-based triboelectric nanogenerator with amplified current for portable safety devices. Cha K; Chung J; Heo D; Song M; Chung SH; Hwang PTJ; Kim D; Koo B; Hong J; Lee S Sci Technol Adv Mater; 2022; 23(1):161-168. PubMed ID: 35185391 [TBL] [Abstract][Full Text] [Related]
28. Facile Tailoring of Contact Layer Characteristics of the Triboelectric Nanogenerator Based on Portable Imprinting Device. Cho S; Jang S; La M; Yun Y; Yu T; Park SJ; Choi D Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075240 [TBL] [Abstract][Full Text] [Related]
29. Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid. Sano C; Mitsuya H; Ono S; Miwa K; Toshiyoshi H; Fujita H Sci Technol Adv Mater; 2018; 19(1):317-323. PubMed ID: 29707070 [TBL] [Abstract][Full Text] [Related]
30. A Portable Triboelectric Nanogenerator Based on Dehydrated Nopal Powder for Powering Electronic Devices. Elvira-Hernández EA; Nava-Galindo OI; Martínez-Lara EK; Delgado-Alvarado E; López-Huerta F; De León A; Gallardo-Vega C; Herrera-May AL Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177398 [TBL] [Abstract][Full Text] [Related]
31. Effect of Dielectric Material and Package Stiffness on the Power Generation in a Packaged Triboelectric Energy Harvesting System for Total Knee Replacement. Hossain NA; Yamomo GG; Willing R; Towfighian S J Biomech Eng; 2021 Oct; 143(10):. PubMed ID: 34008854 [TBL] [Abstract][Full Text] [Related]
32. Tapping-Actuated Triboelectric Nanogenerator with Surface Charge Density Optimization for Human Motion Energy Harvesting. Duque M; Murillo G Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234398 [TBL] [Abstract][Full Text] [Related]
33. An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay. Wang C; Guo H; Wang P; Li J; Sun Y; Zhang D Adv Mater; 2023 Apr; 35(17):e2209895. PubMed ID: 36738121 [TBL] [Abstract][Full Text] [Related]
34. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Wang S; Xie Y; Niu S; Lin L; Liu C; Zhou YS; Wang ZL Adv Mater; 2014 Oct; 26(39):6720-8. PubMed ID: 25146891 [TBL] [Abstract][Full Text] [Related]
36. Formation of Triboelectric Series via Atomic-Level Surface Functionalization for Triboelectric Energy Harvesting. Shin SH; Bae YE; Moon HK; Kim J; Choi SH; Kim Y; Yoon HJ; Lee MH; Nah J ACS Nano; 2017 Jun; 11(6):6131-6138. PubMed ID: 28558185 [TBL] [Abstract][Full Text] [Related]
37. Flexible Layered-Graphene Charge Modulation for Highly Stable Triboelectric Nanogenerator. Sahoo M; Lai SN; Wu JM; Wu MC; Lai CS Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578591 [TBL] [Abstract][Full Text] [Related]
38. From Triboelectric Nanogenerator to Hybrid Energy Harvesters: A Review on the Integration Strategy toward High Efficiency and Multifunctionality. Wang Y; Wang N; Cao X Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834542 [TBL] [Abstract][Full Text] [Related]
39. A Shared-Electrode and Nested-Tube Structure Triboelectric Nanogenerator for Motion Energy Harvesting. Tian Z; Shao G; Zhang Q; Geng Y; Chen X Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31569481 [TBL] [Abstract][Full Text] [Related]
40. Electrospinning Triboelectric Laminates: A Pathway for Scaling Energy Harvesters. Linarts A; Sherrell PC; Mālnieks K; Ellis AV; Šutka A Small; 2023 Apr; 19(14):e2205563. PubMed ID: 36596644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]