These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31448185)

  • 21. Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique.
    Perez AF; Taing KR; Quon JC; Flores A; Ba Y
    Crystals (Basel); 2019; 9(7):. PubMed ID: 33224522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces.
    Pertaya N; Marshall CB; DiPrinzio CL; Wilen L; Thomson ES; Wettlaufer JS; Davies PL; Braslavsky I
    Biophys J; 2007 May; 92(10):3663-73. PubMed ID: 17325008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry.
    Białkowska A; Majewska E; Olczak A; Twarda-Clapa A
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32053888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant.
    Kim HJ; Lee JH; Hur YB; Lee CW; Park SH; Koo BW
    Mar Drugs; 2017 Jan; 15(2):. PubMed ID: 28134801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation.
    Capicciotti CJ; Poisson JS; Boddy CN; Ben RN
    Cryobiology; 2015 Apr; 70(2):79-89. PubMed ID: 25595636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The stability during low-temperature storage of an antifreeze protein isolated from the roots of cold-acclimated carrots.
    Wang LH; Wusteman MC; Smallwood M; Pegg DE
    Cryobiology; 2002 Jun; 44(3):307-10. PubMed ID: 12237096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antifreeze proteins and their biomimetics for cell cryopreservation: Mechanism, function and application-A review.
    Wu X; Yao F; Zhang H; Li J
    Int J Biol Macromol; 2021 Dec; 192():1276-1291. PubMed ID: 34634336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptide backbone circularization enhances antifreeze protein thermostability.
    Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS
    Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cold-inducible promoter-driven knockdown of
    Juurakko CL; Bredow M; diCenzo GC; Walker VK
    Plant Direct; 2022 Sep; 6(9):e449. PubMed ID: 36172079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recombinant Dendroides canadensis antifreeze proteins as potential ingredients in cryopreservation solutions.
    Halwani DO; Brockbank KG; Duman JG; Campbell LH
    Cryobiology; 2014 Jun; 68(3):411-8. PubMed ID: 24662031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of an antifreeze peptide from the Antarctic sponge Homaxinella balfourensis.
    Wilkins SP; Blum AJ; Burkepile DE; Rutland TJ; Wierzbicki A; Kelly M; Hamann MT
    Cell Mol Life Sci; 2002 Dec; 59(12):2210-5. PubMed ID: 12568347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified Langmuir isotherm for a two-domain adsorbate: derivation and application to antifreeze proteins.
    Can O; Holland NB
    J Colloid Interface Sci; 2009 Jan; 329(1):24-30. PubMed ID: 18945440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. afpCOOL: A tool for antifreeze protein prediction.
    Eslami M; Shirali Hossein Zade R; Takalloo Z; Mahdevar G; Emamjomeh A; Sajedi RH; Zahiri J
    Heliyon; 2018 Jul; 4(7):e00705. PubMed ID: 30094375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity.
    Can O; Holland NB
    Bioconjug Chem; 2011 Oct; 22(10):2166-71. PubMed ID: 21905742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New insights into ice growth and melting modifications by antifreeze proteins.
    Bar-Dolev M; Celik Y; Wettlaufer JS; Davies PL; Braslavsky I
    J R Soc Interface; 2012 Dec; 9(77):3249-59. PubMed ID: 22787007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.