BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31448388)

  • 1. Fusarium Head Blight Modifies Fungal Endophytic Communities During Infection of Wheat Spikes.
    Rojas EC; Sapkota R; Jensen B; Jørgensen HJL; Henriksson T; Jørgensen LN; Nicolaisen M; Collinge DB
    Microb Ecol; 2020 Feb; 79(2):397-408. PubMed ID: 31448388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endophytic Fungi as a Promising Biocontrol Agent to Protect Wheat from
    Noel ZA; Roze LV; Breunig M; Trail F
    Plant Dis; 2022 Feb; 106(2):595-602. PubMed ID: 34587775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes.
    Cowger C; Arellano C
    Phytopathology; 2013 May; 103(5):460-71. PubMed ID: 23252971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum.
    Lionetti V; Giancaspro A; Fabri E; Giove SL; Reem N; Zabotina OA; Blanco A; Gadaleta A; Bellincampi D
    BMC Plant Biol; 2015 Jan; 15():6. PubMed ID: 25597920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests.
    Comby M; Gacoin M; Robineau M; Rabenoelina F; Ptas S; Dupont J; Profizi C; Baillieul F
    Microbiol Res; 2017 Sep; 202():11-20. PubMed ID: 28647118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum.
    Ding L; Yang R; Yang G; Cao J; Li P; Zhou Y
    Planta; 2016 Mar; 243(3):719-31. PubMed ID: 26669597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat.
    Jaber LR
    Planta; 2018 Dec; 248(6):1525-1535. PubMed ID: 30140979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of QTL and eQTL controlling early Fusarium graminearum infection and deoxynivalenol levels in a Wuhan 1 x Nyubai doubled haploid wheat population.
    Fauteux F; Wang Y; Rocheleau H; Liu Z; Pan Y; Fedak G; McCartney C; Ouellet T
    BMC Plant Biol; 2019 Dec; 19(1):536. PubMed ID: 31795937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum).
    Zhou W; Kolb FL; Riechers DE
    Genome; 2005 Oct; 48(5):770-80. PubMed ID: 16391683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheat Blast and Fusarium Head Blight Display Contrasting Interaction Patterns on Ears of Wheat Genotypes Differing in Resistance.
    Ha X; Koopmann B; von Tiedemann A
    Phytopathology; 2016 Mar; 106(3):270-81. PubMed ID: 26574785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene.
    Li X; Zhang JB; Song B; Li HP; Xu HQ; Qu B; Dang FJ; Liao YC
    Phytopathology; 2010 Feb; 100(2):183-91. PubMed ID: 20055652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum.
    Munakata Y; Gavira C; Genestier J; Bourgaud F; Hehn A; Slezack-Deschaumes S
    Microbiol Res; 2021 Feb; 243():126650. PubMed ID: 33302220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutual Exclusion between Fungal Species of the Fusarium Head Blight Complex in a Wheat Spike.
    Siou D; Gélisse S; Laval V; Suffert F; Lannou C
    Appl Environ Microbiol; 2015 Jul; 81(14):4682-9. PubMed ID: 25934622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.
    Lu S; Edwards MC
    Phytopathology; 2016 Feb; 106(2):166-76. PubMed ID: 26524547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimal impacts on the wheat microbiome when
    Alukumbura AS; Bigi A; Sarrocco S; Fernando WGD; Vannacci G; Mazzoncini M; Bakker MG
    Front Microbiol; 2022; 13():972016. PubMed ID: 36212885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain.
    Beccari G; Arellano C; Covarelli L; Tini F; Sulyok M; Cowger C
    Int J Food Microbiol; 2019 Feb; 290():214-225. PubMed ID: 30366263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of Pseudomonas isolates on healthy and Fusarium head blight-infected spikelets of wheat heads.
    Yoshida S; Ohba A; Liang YM; Koitabashi M; Tsushima S
    Microb Ecol; 2012 Jul; 64(1):214-25. PubMed ID: 22314388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins.
    Cheng W; Li HP; Zhang JB; Du HJ; Wei QY; Huang T; Yang P; Kong XW; Liao YC
    Plant Biotechnol J; 2015 Jun; 13(5):664-74. PubMed ID: 25418882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Community ecology of fungal pathogens causing wheat head blight.
    Xu X; Nicholson P
    Annu Rev Phytopathol; 2009; 47():83-103. PubMed ID: 19385728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum.
    Sarowar S; Alam ST; Makandar R; Lee H; Trick HN; Dong Y; Shah J
    Mol Plant Pathol; 2019 May; 20(5):626-640. PubMed ID: 30597698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.