These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31448925)

  • 21. Zeeman splitting via spin-valley-layer coupling in bilayer MoTe
    Jiang C; Liu F; Cuadra J; Huang Z; Li K; Rasmita A; Srivastava A; Liu Z; Gao WB
    Nat Commun; 2017 Oct; 8(1):802. PubMed ID: 28986559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical and Magneto-Optical Properties of Donor-Bound Excitons in Vacancy-Engineered Colloidal Nanocrystals.
    Carulli F; Pinchetti V; Zaffalon ML; Camellini A; Rotta Loria S; Moro F; Fanciulli M; Zavelani-Rossi M; Meinardi F; Crooker SA; Brovelli S
    Nano Lett; 2021 Jul; 21(14):6211-6219. PubMed ID: 34260252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning the localized surface plasmon resonance in Cu(2-x)Se nanocrystals by postsynthetic ligand exchange.
    Balitskii OA; Sytnyk M; Stangl J; Primetzhofer D; Groiss H; Heiss W
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17770-5. PubMed ID: 25233007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals.
    Schwartz DA; Norberg NS; Nguyen QP; Parker JM; Gamelin DR
    J Am Chem Soc; 2003 Oct; 125(43):13205-18. PubMed ID: 14570496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances.
    Jain PK
    J Phys Chem Lett; 2014 Sep; 5(18):3112-9. PubMed ID: 26276321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature.
    Li C; Hsu SC; Lin JX; Chen JY; Chuang KC; Chang YP; Hsu HS; Chen CH; Lin TS; Liu YH
    J Am Chem Soc; 2020 Dec; 142(49):20616-20623. PubMed ID: 33249824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magneto-Optical Properties of CuInS2 Nanocrystals.
    Rice WD; McDaniel H; Klimov VI; Crooker SA
    J Phys Chem Lett; 2014 Dec; 5(23):4105-9. PubMed ID: 26278940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Band-edge exciton fine structure of single CdSe/ZnS nanocrystals in external magnetic fields.
    Biadala L; Louyer Y; Tamarat P; Lounis B
    Phys Rev Lett; 2010 Oct; 105(15):157402. PubMed ID: 21230937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.
    Caldwell AH; Ha DH; Ding X; Robinson RD
    J Chem Phys; 2014 Oct; 141(16):164125. PubMed ID: 25362290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of Free Charge Carriers Govern Exciton Polarization in Plasmonic Semiconductor Nanocrystals.
    Yin P; Chen S; Radovanovic PV
    J Phys Chem Lett; 2022 Jun; 13(24):5545-5552. PubMed ID: 35695871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detecting electronic structure evolution of semiconductor nanocrystals by magnetic circular dichroism spectroscopy.
    Gao X; Zhang X; Yang X; Zhao L; Han B; Alanagh HR; Tang Z
    Nanoscale; 2019 Oct; 11(41):19380-19386. PubMed ID: 31204749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning Equilibrium Compositions in Colloidal Cd1-xMnxSe Nanocrystals Using Diffusion Doping and Cation Exchange.
    Barrows CJ; Chakraborty P; Kornowske LM; Gamelin DR
    ACS Nano; 2016 Jan; 10(1):910-8. PubMed ID: 26643033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of magnetic circular dichroism in GaMnAs: giant zeeman splitting versus spin dependent density of states.
    Berciu M; Chakarvorty R; Zhou YY; Alam MT; Traudt K; Jakiela R; Barcz A; Wojtowicz T; Liu X; Furdyna JK; Dobrowolska M
    Phys Rev Lett; 2009 Jun; 102(24):247202. PubMed ID: 19659041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.
    Runnerstrom EL; Bergerud A; Agrawal A; Johns RW; Dahlman CJ; Singh A; Selbach SM; Milliron DJ
    Nano Lett; 2016 May; 16(5):3390-8. PubMed ID: 27111427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Interplay of Shape and Crystalline Anisotropies in Plasmonic Semiconductor Nanocrystals.
    Kim J; Agrawal A; Krieg F; Bergerud A; Milliron DJ
    Nano Lett; 2016 Jun; 16(6):3879-84. PubMed ID: 27181287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Singly and Doubly Occupied Higher Quantum States in Nanocrystals.
    Jeong J; Yoon B; Kwon YW; Choi D; Jeong KS
    Nano Lett; 2017 Feb; 17(2):1187-1193. PubMed ID: 28112942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.
    Govorov AO; Fan Z; Hernandez P; Slocik JM; Naik RR
    Nano Lett; 2010 Apr; 10(4):1374-82. PubMed ID: 20184381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terahertz response of plasmonic nanoparticles: Plasmonic Zeeman Effect.
    Márquez A; Esquivel-Sirvent R
    Opt Express; 2020 Dec; 28(26):39005-39016. PubMed ID: 33379458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.