These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31449000)

  • 1. Wireless Hyperthermia Stent System for Restenosis Treatment and Testing With Swine Model.
    Yi Y; Chen J; Selvaraj M; Hsiang Y; Takahata K
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1097-1104. PubMed ID: 31449000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wirelessly Heating Stents via Radiofrequency Resonance toward Enabling Endovascular Hyperthermia.
    Yi Y; Chen J; Hsiang Y; Takahata K
    Adv Healthc Mater; 2019 Nov; 8(22):e1900708. PubMed ID: 31625695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent telemetric stent for wireless monitoring of intravascular pressure and its in vivo testing.
    Chen X; Brox D; Assadsangabi B; Hsiang Y; Takahata K
    Biomed Microdevices; 2014 Oct; 16(5):745-59. PubMed ID: 24903011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive inductive stent heating: alternative approach to prevent instent restenosis?
    Floren MG; Günther RW; Schmitz-Rode T
    Invest Radiol; 2004 May; 39(5):264-70. PubMed ID: 15087720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermosensitive material coated resonant stent for drug delivery on demand.
    Bednar VB; Takahata K
    Biomed Microdevices; 2021 Mar; 23(1):18. PubMed ID: 33738628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward an implantable wireless cardiac monitoring platform integrated with an FDA-approved cardiovascular stent.
    Chow EY; Beier BL; Francino A; Chappell WJ; Irazoqui PP
    J Interv Cardiol; 2009 Oct; 22(5):479-87. PubMed ID: 19807844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implant hyperthermia resonant circuit produces heat in response to MRI unit radiofrequency pulses.
    Niwa T; Takemura Y; Inoue T; Aida N; Kurihara H; Hisa T
    Br J Radiol; 2008 Jan; 81(961):69-72. PubMed ID: 17998280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducing intravesical hyperthermia of the ex-vivo porcine bladder wall: radiofrequency-induction versus recirculation using a custom-made device.
    van Valenberg FJP; Witjes JA; Aklan B; de Jong SF; Zegers H; Oosterwijk E
    Int J Hyperthermia; 2018; 35(1):323-329. PubMed ID: 30303406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Angioplasty-Ready "Smart" Stents to Detect In-Stent Restenosis and Occlusion.
    Chen X; Assadsangabi B; Hsiang Y; Takahata K
    Adv Sci (Weinh); 2018 May; 5(5):1700560. PubMed ID: 29876203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Invasive Treatment for Coronary In-Stent Restenosis via Wireless Revascularization With Nitinol Active Stent.
    Ang YX; Khudzari AZM; Ali MSM
    IEEE Trans Biomed Eng; 2021 Dec; 68(12):3681-3689. PubMed ID: 34014819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization.
    Chen X; Song L; Assadsangabi B; Fang J; Mohamed Ali MS; Takahata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5505-8. PubMed ID: 24110983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiofrequency heating studies on anesthetized swine using fractionated dipole antennas at 10.5 T.
    Eryaman Y; Lagore RL; Ertürk MA; Utecht L; Zhang P; Torrado-Carvajal A; Türk EA; DelaBarre L; Metzger GJ; Adriany G; Uğurbil K; Vaughan JT
    Magn Reson Med; 2018 Jan; 79(1):479-488. PubMed ID: 28370375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Characterization of an RF Applicator for In Vitro Tests of Electromagnetic Hyperthermia.
    Ferrero R; Androulakis I; Martino L; Nadar R; van Rhoon GC; Manzin A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.
    Fong J; Xiao Z; Takahata K
    Lab Chip; 2015 Feb; 15(4):1050-8. PubMed ID: 25473933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-miniature wireless temperature sensor for thermal medicine applications.
    Khairi A; Hung SC; Paramesh J; Fedder G; Rabin Y
    Proc SPIE Int Soc Opt Eng; 2011 Jan; 7901():. PubMed ID: 28989222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Health Care Monitoring and Treatment for Coronary Artery Diseases: Challenges and Issues.
    Alghrairi M; Sulaiman N; Mutashar S
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32752231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves.
    Rahimi S; Sarraf EH; Wong GK; Takahata K
    Biomed Microdevices; 2011 Apr; 13(2):267-77. PubMed ID: 21161600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the RF heating of coronary stents at 7.0 Tesla MRI.
    Winter L; Oberacker E; Özerdem C; Ji Y; von Knobelsdorff-Brenkenhoff F; Weidemann G; Ittermann B; Seifert F; Niendorf T
    Magn Reson Med; 2015 Oct; 74(4):999-1010. PubMed ID: 25293952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).
    Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T
    Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.