BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31449002)

  • 1. Wireless Interrogation of Implantable SAW Sensors.
    Zou L; McLeod C; Bahmanyar MR
    IEEE Trans Biomed Eng; 2020 May; 67(5):1409-1417. PubMed ID: 31449002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor.
    Murphy OH; Bahmanyar MR; Borghi A; McLeod CN; Navaratnarajah M; Yacoub MH; Toumazou C
    Biomed Microdevices; 2013 Oct; 15(5):737-49. PubMed ID: 23559403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RF-powered surface wave sensor oscillator--a successful alternative to passive wireless sensing.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Sep; 51(9):1148-56. PubMed ID: 15478976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive wireless MEMS microphones for biomedical applications.
    Sezen AS; Sivaramakrishnan S; Hur S; Rajamani R; Robbins W; Nelson BJ
    J Biomech Eng; 2005 Nov; 127(6):1030-4. PubMed ID: 16438245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial.
    Sharif F; Rosenkranz S; Bartunek J; Kempf T; Assmus B; Mahon NG; Mullens W
    ESC Heart Fail; 2022 Oct; 9(5):2862-2872. PubMed ID: 35686479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interrogation unit for passive wireless SAW sensors based on fourier transform.
    Hamsch M; Hoffmann R; Buff W; Binhack M; Klett S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1449-56. PubMed ID: 15600089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Simulation of an Integrated Wireless Capacitive Sensors Array for Measuring Ventricular Pressure.
    Hernández-Sebastián N; Díaz-Alonso D; Renero-Carrillo FJ; Villa-Villaseñor N; Calleja-Arriaga W
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30149510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of algorithms for SAW-based temperature measurement.
    Schuster S; Scheiblhofer S; Reindl L; Stelzer A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jun; 53(6):1177-85. PubMed ID: 16846150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel fully implantable wireless sensor system for monitoring hypertension patients.
    Cleven NJ; Müntjes JA; Fassbender H; Urban U; Görtz M; Vogt H; Gräfe M; Göttsche T; Penzkofer T; Schmitz-Rode T; Mokwa W
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3124-30. PubMed ID: 22955864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless measurement of temperature using surface acoustic waves sensors.
    Reindl LM; Shrena IM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1457-63. PubMed ID: 15600090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echo Frequency Estimation Technology for Passive Surface Acoustic Wave Resonant Sensors Based on a Genetic Algorithm.
    Wu Y; Li Y; Wang X; Zhang J; Yang J
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable Wireless Intracranial Pressure Monitoring Based on Air Pressure Sensing.
    Jiang H; Guo Y; Wu Z; Zhang C; Jia W; Wang Z
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1076-1087. PubMed ID: 30010593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Characterization of Surface Acoustic Wave-Based Wireless and Passive Temperature Sensing System.
    Zhou Z; Wang H; Lou L
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary study on implantable inductive-type sensor for continuous monitoring of intraocular pressure.
    Kim YW; Kim MJ; Park KH; Jeoung JW; Kim SH; Jang CI; Lee SH; Kim JH; Lee S; Kang JY
    Clin Exp Ophthalmol; 2015 Dec; 43(9):830-7. PubMed ID: 26146890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.
    Wang F; Zhang X; Shokoueinejad M; Iskandar BJ; Medow JE; Webster JG
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1123-1132. PubMed ID: 28809712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of wireless SAW sensors.
    Polh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):317-32. PubMed ID: 18238546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Cardiac Wireless Implant Communication: A Feasibility Study on Selecting the Frequency and Matching Medium.
    Amin B; Rehman MRU; Farooq M; Elahi A; Donaghey K; Wijns W; Shahzad A; Vazquez P
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Temperature SAW Wireless Strain Sensor with Langasite.
    Shu L; Peng B; Yang Z; Wang R; Deng S; Liu X
    Sensors (Basel); 2015 Nov; 15(11):28531-42. PubMed ID: 26569255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory and application of passive SAW radio transponders as sensors.
    Reindl L; Scholl G; Ostertag T; Scherr H; Wolff U; Schmidt F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1281-92. PubMed ID: 18244291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matching layer for path loss reduction in ultra wideband implant communications.
    Chavez-Santiago R; Khaleghi A; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6989-92. PubMed ID: 25571604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.