These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31449011)

  • 1. Microbubble Radiation Force-Induced Translation in Plane-Wave Versus Focused Transmission Modes.
    Guidi F; Supponen O; Upadhyay A; Vos HJ; Borden MA; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Dec; 66(12):1856-1865. PubMed ID: 31449011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plane-Wave Contrast Imaging: A Radiation Force Point of View.
    Blue LM; Guidi F; Vos HJ; Slagle CJ; Borden MA; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2296-2300. PubMed ID: 29994658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of size range on ultrasound-induced translations in microbubble populations.
    Supponen O; Upadhyay A; Lum J; Guidi F; Murray T; Vos HJ; Tortoli P; Borden M
    J Acoust Soc Am; 2020 May; 147(5):3236. PubMed ID: 32486824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of Normalized Singular Spectrum Area as a Classifier for Molecularly Targeted Microbubble Adherence.
    Herbst EB; Unnikrishnan S; Klibanov AL; Mauldin FW; Hossack JA
    Ultrasound Med Biol; 2019 Sep; 45(9):2493-2501. PubMed ID: 31227262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging.
    Hu X; Zheng H; Kruse DE; Sutcliffe P; Stephens DN; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):305-16. PubMed ID: 20178897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound contrast plane wave imaging.
    Couture O; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2676-83. PubMed ID: 23221216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging.
    Lindsey BD; Rojas JD; Martin KH; Shelton SE; Dayton PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1668-87. PubMed ID: 25265176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application.
    Unnikrishnan S; Klibanov AL
    AJR Am J Roentgenol; 2012 Aug; 199(2):292-9. PubMed ID: 22826389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of postexcitation thresholds for single ultrasound contrast agent microbubbles using double passive cavitation detection.
    King DA; Malloy MJ; Roberts AC; Haak A; Yoder CC; O'Brien WD
    J Acoust Soc Am; 2010 Jun; 127(6):3449-55. PubMed ID: 20550244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravascular ultrasound catheter to enhance microbubble-based drug delivery via acoustic radiation force.
    Kilroy JP; Klibanov AL; Wamhoff BR; Hossack J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2156-66. PubMed ID: 23143566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast Agent Microbubble Jetting during Initial Interaction with 200-kHz Focused Ultrasound.
    Cleve S; Inserra C; Prentice P
    Ultrasound Med Biol; 2019 Nov; 45(11):3075-3080. PubMed ID: 31477370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound-driven microbubble oscillation and translation within small phantom vessels.
    Zheng H; Dayton PA; Caskey C; Zhao S; Qin S; Ferrara KW
    Ultrasound Med Biol; 2007 Dec; 33(12):1978-87. PubMed ID: 17900793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo demonstration of cancer molecular imaging with ultrasound radiation force and buried-ligand microbubbles.
    Borden MA; Streeter JE; Sirsi SR; Dayton PA
    Mol Imaging; 2013 Sep; 12(6):357-63. PubMed ID: 23981781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbubble destruction by dual-high-frequency ultrasound excitation.
    Yeh CK; Su SY; Shen CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1113-8. PubMed ID: 19473929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.
    Puett C; Sheeran PS; Rojas JD; Dayton PA
    Ultrasonics; 2014 Sep; 54(7):2024-33. PubMed ID: 24965563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-high-frequency ultrasound excitation on microbubble destruction volume.
    Shen CC; Su SY; Cheng CH; Yeh CK
    Ultrasonics; 2010 Jun; 50(7):698-703. PubMed ID: 20193957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Superharmonic Contrast Imaging Using a Hybrid Dual-Frequency Probe.
    Cherin E; Yin J; Forbrich A; White C; Dayton PA; Foster FS; Démoré CEM
    Ultrasound Med Biol; 2019 Sep; 45(9):2525-2539. PubMed ID: 31196746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An IVUS transducer for microbubble therapies.
    Kilroy JP; Patil AV; Rychak JJ; Hossack JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):441-9. PubMed ID: 24569249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced microbubble contrast agent oscillation following 250 kHz insonation.
    Ilovitsh T; Ilovitsh A; Foiret J; Caskey CF; Kusunose J; Fite BZ; Zhang H; Mahakian LM; Tam S; Butts-Pauly K; Qin S; Ferrara KW
    Sci Rep; 2018 Nov; 8(1):16347. PubMed ID: 30397280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.