BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31449259)

  • 1. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Multi-channel in vivo recording technique: microdrive array fabrication and electrode implantation in mice].
    Ma XY; Zhang YY; Wang LN; Lin LN
    Sheng Li Xue Bao; 2013 Dec; 65(6):637-46. PubMed ID: 24343722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 4. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent.
    Vöröslakos M; Petersen PC; Vöröslakos B; Buzsáki G
    Elife; 2021 May; 10():. PubMed ID: 34009122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A silicon-based microelectrode array with a microdrive for monitoring brainstem regions of freely moving rats.
    Márton G; Baracskay P; Cseri B; Plósz B; Juhász G; Fekete Z; Pongrácz A
    J Neural Eng; 2016 Apr; 13(2):026025. PubMed ID: 26924827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification.
    Bragin A; Hetke J; Wilson CL; Anderson DJ; Engel J; Buzsáki G
    J Neurosci Methods; 2000 May; 98(1):77-82. PubMed ID: 10837874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of microdrive arrays for chronic neural recordings in awake behaving mice.
    Chang EH; Frattini SA; Robbiati S; Huerta PT
    J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals.
    Billard MW; Bahari F; Kimbugwe J; Alloway KD; Gluckman BJ
    eNeuro; 2018; 5(6):. PubMed ID: 30627656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reimplantable Microdrive for Long-Term Chronic Extracellular Recordings in Freely Moving Rats.
    Polo-Castillo LE; Villavicencio M; Ramírez-Lugo L; Illescas-Huerta E; Moreno MG; Ruiz-Huerta L; Gutierrez R; Sotres-Bayon F; Caballero-Ruiz A
    Front Neurosci; 2019; 13():128. PubMed ID: 30846926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed Recoverable Microdrive and Base Plate System for Rodent Electrophysiology.
    Vöröslakos M; Miyawaki H; Royer S; Diba K; Yoon E; Petersen PC; Buzsáki G
    Bio Protoc; 2021 Aug; 11(16):e4137. PubMed ID: 34541053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice.
    Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS
    J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lightweight microdrive for single-unit recording in freely moving rats and pigeons.
    Bilkey DK; Russell N; Colombo M
    Methods; 2003 Jun; 30(2):152-8. PubMed ID: 12725781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice.
    Jeantet Y; Cho YH
    J Neurosci Methods; 2003 Oct; 129(2):129-34. PubMed ID: 14511816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opto-electrical bimodal recording of neural activity in awake head-restrained mice.
    Cobar LF; Kashef A; Bose K; Tashiro A
    Sci Rep; 2022 Jan; 12(1):736. PubMed ID: 35031630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved version of the printed circuit board (PCB) modular multi-channel microdrive for extracellular electrophysiological recordings.
    Tóth A; Petykó Z; Máthé K; Szabó I; Czurkó A
    J Neurosci Methods; 2007 Jan; 159(1):51-6. PubMed ID: 16890295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.
    Fiáth R; Beregszászi P; Horváth D; Wittner L; Aarts AA; Ruther P; Neves HP; Bokor H; Acsády L; Ulbert I
    J Neurophysiol; 2016 Nov; 116(5):2312-2330. PubMed ID: 27535370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.
    Santos L; Opris I; Fuqua J; Hampson RE; Deadwyler SA
    J Neurosci Methods; 2012 Apr; 205(2):368-74. PubMed ID: 22326226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature microdrive-headstage assembly for extracellular recording of neuronal activity with high-impedance electrodes in freely moving mice.
    Korshunov VA
    J Neurosci Methods; 2006 Dec; 158(2):179-85. PubMed ID: 16828875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.