BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31449260)

  • 1. Implementation of Interference Reflection Microscopy for Label-free, High-speed Imaging of Microtubules.
    Mahamdeh M; Howard J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Interference Reflection and Total Internal Reflection Fluorescence Microscopy for Imaging Dynamic Microtubules and Associated Proteins.
    Tuna Y; Al-Hiyasat A; Howard J
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy.
    Kuo YW; Howard J
    Methods Mol Biol; 2022; 2430():73-91. PubMed ID: 35476326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy.
    Mahamdeh M; Simmert S; Luchniak A; Schäffer E; Howard J
    J Microsc; 2018 Oct; 272(1):60-66. PubMed ID: 30044498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free Imaging of Microtubules with Sub-nm Precision Using Interferometric Scattering Microscopy.
    Andrecka J; Ortega Arroyo J; Lewis K; Cross RA; Kukura P
    Biophys J; 2016 Jan; 110(1):214-7. PubMed ID: 26745424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy.
    Spector JO; Vemu A; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():39-51. PubMed ID: 31879897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.
    Kandel ME; Teng KW; Selvin PR; Popescu G
    ACS Nano; 2017 Jan; 11(1):647-655. PubMed ID: 27997798
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Hirst WG; Kiefer C; Abdosamadi MK; Schäffer E; Reber S
    STAR Protoc; 2020 Dec; 1(3):100177. PubMed ID: 33377071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy.
    Chen Y; Liu W; Zhang Z; Zheng C; Huang Y; Cao R; Zhu D; Xu L; Zhang M; Zhang YH; Fan J; Jin L; Xu Y; Kuang C; Liu X
    Nat Commun; 2018 Nov; 9(1):4818. PubMed ID: 30446673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging.
    Simmert S; Abdosamadi MK; Hermsdorf G; Schäffer E
    Opt Express; 2018 May; 26(11):14499-14513. PubMed ID: 29877486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule dynamics at the cell cortex probed by TIRF microscopy.
    Grigoriev I; Akhmanova A
    Methods Cell Biol; 2010; 97():91-109. PubMed ID: 20719267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
    Stoppin-Mellet V; Bagdadi N; Saoudi Y; Arnal I
    Methods Mol Biol; 2020; 2101():77-91. PubMed ID: 31879899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface reflection interference microscopy: a new method for visualizing cytoskeletal components by light microscopy.
    Opas M; Kalnins VI
    J Microsc; 1984 Mar; 133(Pt 3):291-306. PubMed ID: 6371242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interference reflection microscopy.
    Barr VA; Bunnell SC
    Curr Protoc Cell Biol; 2009 Dec; Chapter 4():Unit 4.23. PubMed ID: 20013754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev.
    Yenjerla M; Lopus M; Wilson L
    Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy.
    Yildiz A; Vale RD
    Cold Spring Harb Protoc; 2015 Sep; 2015(9):pdb.prot086355. PubMed ID: 26330626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term observation of cultured cells by interference-reflection microscopy: near-infrared illumination and Y-contrast image processing.
    Zand MS; Albrecht-Buehler G
    Cell Motil Cytoskeleton; 1989; 13(2):94-103. PubMed ID: 2766364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules.
    Gell C; Berndt M; Enderlein J; Diez S
    J Microsc; 2009 Apr; 234(1):38-46. PubMed ID: 19335455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D reconstruction of microtubules from multi-angle total internal reflection fluorescence microscopy using Bayesian framework.
    Yang Q; Karpikov A; Toomre D; Duncan JS
    IEEE Trans Image Process; 2011 Aug; 20(8):2248-59. PubMed ID: 21324778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large field-of-view nanometer-sectioning microscopy by using metal-induced energy transfer and biexponential lifetime analysis.
    Hwang W; Seo J; Kim D; Lee CJ; Choi IH; Yoo KH; Kim DY
    Commun Biol; 2021 Jan; 4(1):91. PubMed ID: 33469155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.