These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31449260)
1. Implementation of Interference Reflection Microscopy for Label-free, High-speed Imaging of Microtubules. Mahamdeh M; Howard J J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449260 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous Interference Reflection and Total Internal Reflection Fluorescence Microscopy for Imaging Dynamic Microtubules and Associated Proteins. Tuna Y; Al-Hiyasat A; Howard J J Vis Exp; 2022 May; (183):. PubMed ID: 35604180 [TBL] [Abstract][Full Text] [Related]
3. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy. Kuo YW; Howard J Methods Mol Biol; 2022; 2430():73-91. PubMed ID: 35476326 [TBL] [Abstract][Full Text] [Related]
4. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. Mahamdeh M; Simmert S; Luchniak A; Schäffer E; Howard J J Microsc; 2018 Oct; 272(1):60-66. PubMed ID: 30044498 [TBL] [Abstract][Full Text] [Related]
5. Multi-camera Simultaneous Total Internal Reflection and Interference Reflection Microscopy. Spector JO; Chen J; Roll-Mecak A bioRxiv; 2024 Aug; ():. PubMed ID: 39372801 [TBL] [Abstract][Full Text] [Related]
6. Label-free Imaging of Microtubules with Sub-nm Precision Using Interferometric Scattering Microscopy. Andrecka J; Ortega Arroyo J; Lewis K; Cross RA; Kukura P Biophys J; 2016 Jan; 110(1):214-7. PubMed ID: 26745424 [TBL] [Abstract][Full Text] [Related]
7. In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy. Spector JO; Vemu A; Roll-Mecak A Methods Mol Biol; 2020; 2101():39-51. PubMed ID: 31879897 [TBL] [Abstract][Full Text] [Related]
8. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy. Kandel ME; Teng KW; Selvin PR; Popescu G ACS Nano; 2017 Jan; 11(1):647-655. PubMed ID: 27997798 [TBL] [Abstract][Full Text] [Related]
16. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev. Yenjerla M; Lopus M; Wilson L Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136 [TBL] [Abstract][Full Text] [Related]
17. Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy. Yildiz A; Vale RD Cold Spring Harb Protoc; 2015 Sep; 2015(9):pdb.prot086355. PubMed ID: 26330626 [TBL] [Abstract][Full Text] [Related]
18. Long-term observation of cultured cells by interference-reflection microscopy: near-infrared illumination and Y-contrast image processing. Zand MS; Albrecht-Buehler G Cell Motil Cytoskeleton; 1989; 13(2):94-103. PubMed ID: 2766364 [TBL] [Abstract][Full Text] [Related]
19. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules. Gell C; Berndt M; Enderlein J; Diez S J Microsc; 2009 Apr; 234(1):38-46. PubMed ID: 19335455 [TBL] [Abstract][Full Text] [Related]
20. 3-D reconstruction of microtubules from multi-angle total internal reflection fluorescence microscopy using Bayesian framework. Yang Q; Karpikov A; Toomre D; Duncan JS IEEE Trans Image Process; 2011 Aug; 20(8):2248-59. PubMed ID: 21324778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]