These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31449324)

  • 1. Inverse-probability-of-treatment weighted estimation of causal parameters in the presence of error-contaminated and time-dependent confounders.
    Shu D; Yi GY
    Biom J; 2019 Nov; 61(6):1507-1525. PubMed ID: 31449324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent inverse probability of treatment weighted estimation of the average treatment effect with mismeasured time-dependent confounders.
    Yan Y; Ren M
    Stat Med; 2023 Feb; 42(4):517-535. PubMed ID: 36513267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted causal inference methods with mismeasured covariates and misclassified outcomes.
    Shu D; Yi GY
    Stat Med; 2019 May; 38(10):1835-1854. PubMed ID: 30609095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the average treatment effect with variable selection and measurement error simultaneously addressed for potential confounders.
    Yi GY; Chen LP
    Stat Methods Med Res; 2023 Apr; 32(4):691-711. PubMed ID: 36694932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Causal inference with measurement error in outcomes: Bias analysis and estimation methods.
    Shu D; Yi GY
    Stat Methods Med Res; 2019 Jul; 28(7):2049-2068. PubMed ID: 29241426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling time-varying exposure using inverse probability of treatment weights.
    Grafféo N; Latouche A; Geskus RB; Chevret S
    Biom J; 2018 Mar; 60(2):323-332. PubMed ID: 29280181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On Bayesian estimation of marginal structural models.
    Saarela O; Stephens DA; Moodie EE; Klein MB
    Biometrics; 2015 Jun; 71(2):279-88. PubMed ID: 25677103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of error-in-confounders on the estimation of the causal parameter when using marginal structural models and inverse probability-of-treatment weights: a simulation study.
    Regier MD; Moodie EE; Platt RW
    Int J Biostat; 2014; 10(1):1-15. PubMed ID: 24445244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interval-cohort designs and bias in the estimation of per-protocol effects: a simulation study.
    Young JG; Vatsa R; Murray EJ; Hernán MA
    Trials; 2019 Sep; 20(1):552. PubMed ID: 31488202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals.
    Almirall D; Griffin BA; McCaffrey DF; Ramchand R; Yuen RA; Murphy SA
    Stat Med; 2014 Sep; 33(20):3466-87. PubMed ID: 23873437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips.
    Shinozaki T; Suzuki E
    J Epidemiol; 2020 Sep; 30(9):377-389. PubMed ID: 32684529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Causal Inference Methods in the Analysis of Observational Neurosurgical Data: G-Formula and Marginal Structural Model.
    Kawahara T; Shiba K; Tsuchiya A
    World Neurosurg; 2022 May; 161():310-315. PubMed ID: 35505549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.
    Zheng W; Petersen M; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):233-52. PubMed ID: 27227723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.
    Austin PC; Stuart EA
    Stat Med; 2015 Dec; 34(28):3661-79. PubMed ID: 26238958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing approaches to causal inference for longitudinal data: inverse probability weighting versus propensity scores.
    Ertefaie A; Stephens DA
    Int J Biostat; 2010; 6(2):Article 14. PubMed ID: 21969998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural equation modeling versus marginal structural modeling for assessing mediation in the presence of posttreatment confounding.
    Moerkerke B; Loeys T; Vansteelandt S
    Psychol Methods; 2015 Jun; 20(2):204-20. PubMed ID: 25751514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marginal structural models and causal inference in epidemiology.
    Robins JM; Hernán MA; Brumback B
    Epidemiology; 2000 Sep; 11(5):550-60. PubMed ID: 10955408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.