These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31449419)

  • 1. Signatures of Small Morphological Anisotropies in the Plasmonic and Vibrational Responses of Individual Nano-objects.
    Medeghini F; Rouxel R; Crut A; Maioli P; Rossella F; Banfi F; Vallée F; Del Fatti N
    J Phys Chem Lett; 2019 Sep; 10(18):5372-5380. PubMed ID: 31449419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the Quality Factor of a Single Acoustic Nanoresonator by Tuning its Morphology.
    Medeghini F; Crut A; Gandolfi M; Rossella F; Maioli P; Vallée F; Banfi F; Del Fatti N
    Nano Lett; 2018 Aug; 18(8):5159-5166. PubMed ID: 29989822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear and ultrafast nonlinear plasmonics of single nano-objects.
    Crut A; Maioli P; Vallée F; Del Fatti N
    J Phys Condens Matter; 2017 Mar; 29(12):123002. PubMed ID: 28094243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of supporting nanometric membranes on the thermo-optical dynamics of individual plasmonic nanodisks.
    Panais C; Lascoux N; Marguet S; Maioli P; Banfi F; Vallée F; Del Fatti N; Crut A
    Nanoscale; 2024 Jun; 16(25):12071-12080. PubMed ID: 38814049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization dependent plasmonic modes in elliptical graphene disk arrays.
    Xia Y; Dai Y; Wang B; Chen A; Zhang Y; Zhang Y; Guan F; Liu X; Shi L; Zi J
    Opt Express; 2019 Jan; 27(2):1080-1089. PubMed ID: 30696179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films.
    Brawley ZT; Storm SD; Contreras Mora DA; Pelton M; Sheldon M
    J Chem Phys; 2021 Mar; 154(10):104305. PubMed ID: 33722049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of the retardation effect on the plasmonic resonances of aluminum nanodisks in the symmetric/asymmetric environment.
    Zhang F; Martin J; Murai S; Adam PM; Plain J; Tanaka K
    Opt Express; 2021 May; 29(10):14799-14814. PubMed ID: 33985194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantum mechanical study of optical excitations in nanodisk plasmonic oligomers.
    Mokkath JH
    Phys Chem Chem Phys; 2019 Dec; 21(48):26540-26548. PubMed ID: 31778133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold-Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing.
    Misbah I; Zhao F; Shih WC
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2273-2281. PubMed ID: 30569702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of high order plasmonic modes on ceramic nanodisks.
    Gosciniak J; Justice J; Khan U; Modreanu M; Corbett B
    Opt Express; 2017 Mar; 25(5):5244-5254. PubMed ID: 28380788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional emission from a single plasmonic scatterer.
    Coenen T; Bernal Arango F; Femius Koenderink A; Polman A
    Nat Commun; 2014; 5():3250. PubMed ID: 24488237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging.
    Wi JS; Park J; Kang H; Jung D; Lee SW; Lee TG
    ACS Nano; 2017 Jun; 11(6):6225-6232. PubMed ID: 28531347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-plane coherent control of plasmon resonances for plasmonic switching and encoding.
    Jiang L; Yin T; Dubrovkin AM; Dong Z; Chen Y; Chen W; Yang JKW; Shen Z
    Light Sci Appl; 2019; 8():21. PubMed ID: 30728959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local refractive index sensitivity of gold nanodisks.
    Häfele V; Trügler A; Hohenester U; Hohenau A; Leitner A; Krenn JR
    Opt Express; 2015 Apr; 23(8):10293-300. PubMed ID: 25969071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Figure of Merit (FOM) of Bragg Modes in Au-Coated Nanodisk Arrays for Plasmonic Sensing.
    Couture M; Brulé T; Laing S; Cui W; Sarkar M; Charron B; Faulds K; Peng W; Canva M; Masson JF
    Small; 2017 Oct; 13(38):. PubMed ID: 28834166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling.
    Chen L; Sakamoto M; Sato R; Teranishi T
    Faraday Discuss; 2015; 181():355-64. PubMed ID: 25927080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Gold Nanoparticle Coupling with a 2D Plasmonic Crystal at High Incidence Angles.
    Lu M; Hong L; Liang Y; Charron B; Zhu H; Peng W; Masson JF
    Anal Chem; 2018 Jun; 90(11):6683-6692. PubMed ID: 29738232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced plasmon coupling of partly embedded gold nanospheres with surrounding silicon.
    Zuo Z; Wen Y; Zhang S; Qu J; Cui G; Shi Y
    Nanotechnology; 2017 Jul; 28(28):285201. PubMed ID: 28562370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.