These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Pauck RG; Reddy BD Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397 [TBL] [Abstract][Full Text] [Related]
5. Characterisation and constitutive modelling of biaxially stretched poly(L-lactic acid) sheet for application in coronary stents. Blair RW; Dunne NJ; Lennon AB; Menary GH J Mech Behav Biomed Mater; 2019 Sep; 97():346-354. PubMed ID: 31153116 [TBL] [Abstract][Full Text] [Related]
6. Effects of stent design parameters on normal artery wall mechanics. Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763 [TBL] [Abstract][Full Text] [Related]
7. Processing-property relationships of biaxially stretched poly(L-lactic acid) sheet for application in coronary stents. Blair RW; Dunne NJ; Lennon AB; Menary GH J Mech Behav Biomed Mater; 2018 Oct; 86():113-121. PubMed ID: 29986286 [TBL] [Abstract][Full Text] [Related]
8. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. Holzapfel GA; Stadler M; Gasser TC J Biomech Eng; 2005 Feb; 127(1):166-80. PubMed ID: 15868799 [TBL] [Abstract][Full Text] [Related]
9. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate. Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984 [TBL] [Abstract][Full Text] [Related]
11. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models. Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368 [TBL] [Abstract][Full Text] [Related]
12. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations. Qiu TY; Zhao LG; Song M Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211 [TBL] [Abstract][Full Text] [Related]
13. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis. Toong DWY; Ng JCK; Cui F; Leo HL; Zhong L; Lian SS; Venkatraman S; Tan LP; Huang YY; Ang HY J Mech Behav Biomed Mater; 2022 Jan; 125():104977. PubMed ID: 34814078 [TBL] [Abstract][Full Text] [Related]
14. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. Grogan JA; Leen SB; McHugh PE J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476 [TBL] [Abstract][Full Text] [Related]
15. Evolution of the SYNERGY bioresorbable polymer metallic coronary stent. Shreenivas SS; Kereiakes DJ Future Cardiol; 2018 Jul; 14(4):307-317. PubMed ID: 29926758 [TBL] [Abstract][Full Text] [Related]
16. Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis. Martin D; Boyle F Cardiovasc Eng Technol; 2015 Sep; 6(3):314-28. PubMed ID: 26577363 [TBL] [Abstract][Full Text] [Related]
17. Cardiovascular stent design and vessel stresses: a finite element analysis. Lally C; Dolan F; Prendergast PJ J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213 [TBL] [Abstract][Full Text] [Related]
18. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance. Mattesini A; Secco GG; Dall'Ara G; Ghione M; Rama-Merchan JC; Lupi A; Viceconte N; Lindsay AC; De Silva R; Foin N; Naganuma T; Valente S; Colombo A; Di Mario C JACC Cardiovasc Interv; 2014 Jul; 7(7):741-50. PubMed ID: 25060016 [TBL] [Abstract][Full Text] [Related]
19. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening. LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918 [TBL] [Abstract][Full Text] [Related]
20. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model. Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]