BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31449531)

  • 1. Caveolae and scaffold detection from single molecule localization microscopy data using deep learning.
    Khater IM; Aroca-Ouellette ST; Meng F; Nabi IR; Hamarneh G
    PLoS One; 2019; 14(8):e0211659. PubMed ID: 31449531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of caveolin-1 domain signatures via machine learning and graphlet analysis of single-molecule super-resolution data.
    Khater IM; Meng F; Nabi IR; Hamarneh G
    Bioinformatics; 2019 Sep; 35(18):3468-3475. PubMed ID: 30759191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super Resolution Network Analysis Defines the Molecular Architecture of Caveolae and Caveolin-1 Scaffolds.
    Khater IM; Meng F; Wong TH; Nabi IR; Hamarneh G
    Sci Rep; 2018 Jun; 8(1):9009. PubMed ID: 29899348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution modularity analysis shows polyhedral caveolin-1 oligomers combine to form scaffolds and caveolae.
    Khater IM; Liu Q; Chou KC; Hamarneh G; Nabi IR
    Sci Rep; 2019 Jul; 9(1):9888. PubMed ID: 31285524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galectin-3 Overrides PTRF/Cavin-1 Reduction of PC3 Prostate Cancer Cell Migration.
    Meng F; Joshi B; Nabi IR
    PLoS One; 2015; 10(5):e0126056. PubMed ID: 25942420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease.
    Enyong EN; Gurley JM; De Ieso ML; Stamer WD; Elliott MH
    Prog Retin Eye Res; 2022 Nov; 91():101094. PubMed ID: 35729002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression.
    Gould ML; Williams G; Nicholson HD
    Prostate; 2010 Nov; 70(15):1609-21. PubMed ID: 20564315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9.
    Aung CS; Hill MM; Bastiani M; Parton RG; Parat MO
    Eur J Cell Biol; 2011; 90(2-3):136-42. PubMed ID: 20732728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Deep-Learning-Based Single-Molecule Localization Image Analysis.
    Hyun Y; Kim D
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molecule network analysis identifies structural changes to caveolae and scaffolds due to mutation of the caveolin-1 scaffolding domain.
    Wong TH; Khater IM; Joshi B; Shahsavari M; Hamarneh G; Nabi IR
    Sci Rep; 2021 Apr; 11(1):7810. PubMed ID: 33833286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function.
    Hill MM; Bastiani M; Luetterforst R; Kirkham M; Kirkham A; Nixon SJ; Walser P; Abankwa D; Oorschot VM; Martin S; Hancock JF; Parton RG
    Cell; 2008 Jan; 132(1):113-24. PubMed ID: 18191225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes.
    Aboulaich N; Vainonen JP; Strålfors P; Vener AV
    Biochem J; 2004 Oct; 383(Pt 2):237-48. PubMed ID: 15242332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
    Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA
    Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating single molecule localization microscopy through parallel processing on a high-performance computing cluster.
    Munro I; García E; Yan M; Guldbrand S; Kumar S; Kwakwa K; Dunsby C; Neil MAA; French PMW
    J Microsc; 2019 Feb; 273(2):148-160. PubMed ID: 30508256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes.
    Hayer A; Stoeber M; Bissig C; Helenius A
    Traffic; 2010 Mar; 11(3):361-82. PubMed ID: 20070607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs.
    Stoeber M; Schellenberger P; Siebert CA; Leyrat C; Helenius A; Grünewald K
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8069-E8078. PubMed ID: 27834731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single molecule localization-based analysis of clathrin-coated pit and caveolar dynamics.
    Ma R; Štefl M; Nienhaus GU
    Nanoscale Horiz; 2022 Mar; 7(4):385-395. PubMed ID: 35289830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based spectroscopic single-molecule localization microscopy.
    Gaire SK; Daneshkhah A; Flowerday E; Gong R; Frederick J; Backman V
    J Biomed Opt; 2024 Jun; 29(6):066501. PubMed ID: 38799979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.