BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31449531)

  • 61. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets.
    Cha KH; Hadjiiski L; Samala RK; Chan HP; Caoili EM; Cohan RH
    Med Phys; 2016 Apr; 43(4):1882. PubMed ID: 27036584
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods.
    Khater IM; Nabi IR; Hamarneh G
    Patterns (N Y); 2020 Jun; 1(3):100038. PubMed ID: 33205106
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synaptotagmin-11 regulates the functions of caveolae and responds to mechanical stimuli in astrocytes.
    Yan S; Wang Y; Zhang Y; Wang L; Zhao X; Du C; Gao P; Yan F; Liu F; Gong X; Guan Y; Cui X; Wang X; Xi Zhang C
    FASEB J; 2020 Feb; 34(2):2609-2624. PubMed ID: 31908017
    [TBL] [Abstract][Full Text] [Related]  

  • 65. UBE2O ubiquitinates PTRF/CAVIN1 and inhibits the secretion of exosome-related PTRF/CAVIN1.
    Cen X; Chen Q; Wang B; Xu H; Wang X; Ling Y; Zhang X; Qin D
    Cell Commun Signal; 2022 Nov; 20(1):191. PubMed ID: 36443833
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.
    Sun W; Zheng B; Qian W
    Comput Biol Med; 2017 Oct; 89():530-539. PubMed ID: 28473055
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae.
    Zimnicka AM; Husain YS; Shajahan AN; Sverdlov M; Chaga O; Chen Z; Toth PT; Klomp J; Karginov AV; Tiruppathi C; Malik AB; Minshall RD
    Mol Biol Cell; 2016 Jul; 27(13):2090-106. PubMed ID: 27170175
    [TBL] [Abstract][Full Text] [Related]  

  • 68. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.
    Zhu Q; Li X; Conesa A; Pereira C
    Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Caveolae and cancer: A new mechanical perspective.
    Lamaze C; Torrino S
    Biomed J; 2015; 38(5):367-79. PubMed ID: 26345539
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Deep Learning for Fall Detection: Three-Dimensional CNN Combined With LSTM on Video Kinematic Data.
    Lu N; Wu Y; Feng L; Song J
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):314-323. PubMed ID: 29994460
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Classification of Medical Images in the Biomedical Literature by Jointly Using Deep and Handcrafted Visual Features.
    Zhang J; Xia Y; Xie Y; Fulham M; Feng DD
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1521-1530. PubMed ID: 29990115
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae.
    Gambin Y; Ariotti N; McMahon KA; Bastiani M; Sierecki E; Kovtun O; Polinkovsky ME; Magenau A; Jung W; Okano S; Zhou Y; Leneva N; Mureev S; Johnston W; Gaus K; Hancock JF; Collins BM; Alexandrov K; Parton RG
    Elife; 2013 Jan; 3():e01434. PubMed ID: 24473072
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software.
    Sage D; Pham TA; Babcock H; Lukes T; Pengo T; Chao J; Velmurugan R; Herbert A; Agrawal A; Colabrese S; Wheeler A; Archetti A; Rieger B; Ober R; Hagen GM; Sibarita JB; Ries J; Henriques R; Unser M; Holden S
    Nat Methods; 2019 May; 16(5):387-395. PubMed ID: 30962624
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.
    Sharma H; Zerbe N; Klempert I; Hellwich O; Hufnagl P
    Comput Med Imaging Graph; 2017 Nov; 61():2-13. PubMed ID: 28676295
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.
    Wang Z; Hu M; Zhai G
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642454
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy.
    Mazidi H; Ding T; Nehorai A; Lew MD
    Nat Commun; 2020 Dec; 11(1):6353. PubMed ID: 33311471
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Predicting carcass cut yields in cattle from digital images using artificial intelligence.
    Matthews D; Pabiou T; Evans RD; Beder C; Daly A
    Meat Sci; 2022 Feb; 184():108671. PubMed ID: 34656003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.