These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31449666)
41. FcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys. Datta-Mannan A; Chow CK; Dickinson C; Driver D; Lu J; Witcher DR; Wroblewski VJ Drug Metab Dispos; 2012 Aug; 40(8):1545-55. PubMed ID: 22584253 [TBL] [Abstract][Full Text] [Related]
42. Physiologically based pharmacokinetic (PBPK) model that describes enhanced FcRn-dependent distribution of monoclonal antibodies (mAbs) by pI-engineering in mice. Naoi S; Yamane M; Nemoto T; Kato M; Saito R; Tachibana T Drug Metab Pharmacokinet; 2023 Dec; 53():100506. PubMed ID: 38029470 [TBL] [Abstract][Full Text] [Related]
43. FcRn: the neonatal Fc receptor comes of age. Roopenian DC; Akilesh S Nat Rev Immunol; 2007 Sep; 7(9):715-25. PubMed ID: 17703228 [TBL] [Abstract][Full Text] [Related]
44. Use of Cryopreserved Hepatocytes as Part of an Integrated Strategy to Characterize In Vivo Clearance for Peptide-Antibody Conjugate Inhibitors of Nav1.7 in Preclinical Species. Foti RS; Biswas K; Aral J; Be X; Berry L; Cheng Y; Conner K; Falsey JR; Glaus C; Herberich B; Hickman D; Ikotun T; Li H; Long J; Huang L; Miranda LP; Murray J; Moyer B; Netirojjanakul C; Nixey TE; Sham K; Soto M; Tegley CM; Tran L; Wu B; Yin L; Rock DA Drug Metab Dispos; 2019 Oct; 47(10):1111-1121. PubMed ID: 31387871 [TBL] [Abstract][Full Text] [Related]
45. Development and Evaluation of a Physiologically Based Pharmacokinetic Model for Predicting the Effects of Anti-FcRn Therapy on the Disposition of Endogenous IgG in Humans. Li T; Balthasar JP J Pharm Sci; 2019 Jan; 108(1):714-724. PubMed ID: 30471293 [TBL] [Abstract][Full Text] [Related]
47. Impact of IgG2 high molecular weight species on neonatal Fc receptor binding assays. Zhang Y; Mathur A; Maher G; Arroll T; Bailey R Anal Biochem; 2015 Nov; 489():25-31. PubMed ID: 26255698 [TBL] [Abstract][Full Text] [Related]
48. Targeting FcRn for the modulation of antibody dynamics. Ward ES; Devanaboyina SC; Ober RJ Mol Immunol; 2015 Oct; 67(2 Pt A):131-41. PubMed ID: 25766596 [TBL] [Abstract][Full Text] [Related]
49. Effects of the FcRn developmental pharmacology on the pharmacokinetics of therapeutic monoclonal IgG antibody in pediatric subjects using minimal physiologically-based pharmacokinetic modelling. Hardiansyah D; Ng CM MAbs; 2018 Oct; 10(7):1144-1156. PubMed ID: 29969360 [TBL] [Abstract][Full Text] [Related]
50. Mechanism-Based Competitive Binding Model to Investigate the Effect of Neonatal Fc Receptor Binding Affinity on the Pharmacokinetic of Humanized Anti-VEGF Monoclonal IgG1 Antibody in Cynomolgus Monkey. Ng CM; Fielder PJ; Jin J; Deng R AAPS J; 2016 Jul; 18(4):948-59. PubMed ID: 27075465 [TBL] [Abstract][Full Text] [Related]
51. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. Betts A; Keunecke A; van Steeg TJ; van der Graaf PH; Avery LB; Jones H; Berkhout J MAbs; 2018 Jul; 10(5):751-764. PubMed ID: 29634430 [TBL] [Abstract][Full Text] [Related]
52. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. Gao X; Ji JA; Veeravalli K; Wang YJ; Zhang T; Mcgreevy W; Zheng K; Kelley RF; Laird MW; Liu J; Cromwell M J Pharm Sci; 2015 Feb; 104(2):368-77. PubMed ID: 25175600 [TBL] [Abstract][Full Text] [Related]
53. Certolizumab pegol does not bind the neonatal Fc receptor (FcRn): Consequences for FcRn-mediated in vitro transcytosis and ex vivo human placental transfer. Porter C; Armstrong-Fisher S; Kopotsha T; Smith B; Baker T; Kevorkian L; Nesbitt A J Reprod Immunol; 2016 Aug; 116():7-12. PubMed ID: 27123565 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of an FcRn affinity chromatographic method for IgG1-type antibodies and evaluation of IgG variants. Cymer F; Schlothauer T; Knaupp A; Beck H Bioanalysis; 2017 Sep; 9(17):1305-1317. PubMed ID: 28901177 [TBL] [Abstract][Full Text] [Related]
55. Identification of IgG(1) variants with increased affinity to FcγRIIIa and unaltered affinity to FcγRI and FcRn: comparison of soluble receptor-based and cell-based binding assays. Lu Y; Vernes JM; Chiang N; Ou Q; Ding J; Adams C; Hong K; Truong BT; Ng D; Shen A; Nakamura G; Gong Q; Presta LG; Beresini M; Kelley B; Lowman H; Wong WL; Meng YG J Immunol Methods; 2011 Feb; 365(1-2):132-41. PubMed ID: 21185301 [TBL] [Abstract][Full Text] [Related]
57. Fc engineering: serum half-life modulation through FcRn binding. Olafsen T Methods Mol Biol; 2012; 907():537-56. PubMed ID: 22907373 [TBL] [Abstract][Full Text] [Related]
58. Quantitative methods for developing Fc mutants with extended half-lives. Kamei DT; Lao BJ; Ricci MS; Deshpande R; Xu H; Tidor B; Lauffenburger DA Biotechnol Bioeng; 2005 Dec; 92(6):748-60. PubMed ID: 16136591 [TBL] [Abstract][Full Text] [Related]
59. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. Sanchez L; Wang Y; Siegel DS; Wang ML J Hematol Oncol; 2016 Jun; 9(1):51. PubMed ID: 27363983 [TBL] [Abstract][Full Text] [Related]
60. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: A randomized phase 1 study. Kiessling P; Lledo-Garcia R; Watanabe S; Langdon G; Tran D; Bari M; Christodoulou L; Jones E; Price G; Smith B; Brennan F; White I; Jolles S Sci Transl Med; 2017 Nov; 9(414):. PubMed ID: 29093180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]