These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31449676)
1. Biochemical pathway for the biosynthesis of the Cu Canonica F; Hennecke H; Glockshuber R FEBS Lett; 2019 Nov; 593(21):2977-2989. PubMed ID: 31449676 [TBL] [Abstract][Full Text] [Related]
2. Structural basis and mechanism for metallochaperone-assisted assembly of the Cu Canonica F; Klose D; Ledermann R; Sauer MM; Abicht HK; Quade N; Gossert AD; Chesnov S; Fischer HM; Jeschke G; Hennecke H; Glockshuber R Sci Adv; 2019 Jul; 5(7):eaaw8478. PubMed ID: 31392273 [TBL] [Abstract][Full Text] [Related]
3. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. Abicht HK; Schärer MA; Quade N; Ledermann R; Mohorko E; Capitani G; Hennecke H; Glockshuber R J Biol Chem; 2014 Nov; 289(47):32431-44. PubMed ID: 25274631 [TBL] [Abstract][Full Text] [Related]
4. Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum. Serventi F; Youard ZA; Murset V; Huwiler S; Bühler D; Richter M; Luchsinger R; Fischer HM; Brogioli R; Niederer M; Hennecke H J Biol Chem; 2012 Nov; 287(46):38812-23. PubMed ID: 23012364 [TBL] [Abstract][Full Text] [Related]
5. Thioredoxin-like protein TlpA from Bradyrhizobium japonicum is a reductant for the copper metallochaperone ScoI. Mohorko E; Abicht HK; Bühler D; Glockshuber R; Hennecke H; Fischer HM FEBS Lett; 2012 Nov; 586(23):4094-9. PubMed ID: 23123159 [TBL] [Abstract][Full Text] [Related]
6. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase. Morgada MN; Abriata LA; Cefaro C; Gajda K; Banci L; Vila AJ Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11771-6. PubMed ID: 26351686 [TBL] [Abstract][Full Text] [Related]
7. Metal-metal bonding in biology: EXAFS evidence for a 2.5 A copper-copper bond in the CuA center of cytochrome oxidase. Blackburn NJ; Barr ME; Woodruff WH; van der Oost J; de Vries S Biochemistry; 1994 Aug; 33(34):10401-7. PubMed ID: 8068678 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans. Farrar JA; Lappalainen P; Zumft WG; Saraste M; Thomson AJ Eur J Biochem; 1995 Aug; 232(1):294-303. PubMed ID: 7556164 [TBL] [Abstract][Full Text] [Related]
9. Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of Thermus thermophilus cytochrome oxidase. Chacón KN; Blackburn NJ J Am Chem Soc; 2012 Oct; 134(39):16401-12. PubMed ID: 22946616 [TBL] [Abstract][Full Text] [Related]
10. COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria. Pacheu-Grau D; Wasilewski M; Oeljeklaus S; Gibhardt CS; Aich A; Chudenkova M; Dennerlein S; Deckers M; Bogeski I; Warscheid B; Chacinska A; Rehling P J Mol Biol; 2020 Mar; 432(7):2067-2079. PubMed ID: 32061935 [TBL] [Abstract][Full Text] [Related]
11. Walking the seven lines: binuclear copper A in cytochrome c oxidase and nitrous oxide reductase. Kroneck PMH J Biol Inorg Chem; 2018 Jan; 23(1):27-39. PubMed ID: 29218634 [TBL] [Abstract][Full Text] [Related]
12. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans. Dash BP; Alles M; Bundschuh FA; Richter OH; Ludwig B Biochim Biophys Acta; 2015 Feb; 1847(2):202-211. PubMed ID: 25445316 [TBL] [Abstract][Full Text] [Related]
13. Structure and function of cytochrome-c oxidase. Denis M Biochimie; 1986 Mar; 68(3):459-70. PubMed ID: 2427124 [TBL] [Abstract][Full Text] [Related]
14. Different interaction modes of two cytochrome-c oxidase soluble CuA fragments with their substrates. Maneg O; Ludwig B; Malatesta F J Biol Chem; 2003 Nov; 278(47):46734-40. PubMed ID: 12937163 [TBL] [Abstract][Full Text] [Related]
15. Structural and mechanistic insights into an extracytoplasmic copper trafficking pathway in Streptomyces lividans. Blundell KL; Hough MA; Vijgenboom E; Worrall JA Biochem J; 2014 May; 459(3):525-38. PubMed ID: 24548299 [TBL] [Abstract][Full Text] [Related]
16. Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for Cu Llases ME; Lisa MN; Morgada MN; Giannini E; Alzari PM; Vila AJ FEBS J; 2020 Feb; 287(4):749-762. PubMed ID: 31348612 [TBL] [Abstract][Full Text] [Related]
17. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum. Bühler D; Rossmann R; Landolt S; Balsiger S; Fischer HM; Hennecke H J Biol Chem; 2010 May; 285(21):15704-13. PubMed ID: 20335176 [TBL] [Abstract][Full Text] [Related]
18. Perturbation of the CuA site in cytochrome-c oxidase of Paracoccus denitrificans by replacement of Met227 with isoleucine. Zickermann V; Verkhovsky M; Morgan J; Wikström M; Anemüller S; Bill E; Steffens GC; Ludwig B Eur J Biochem; 1995 Dec; 234(2):686-93. PubMed ID: 8536720 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer between cytochrome c and the isolated CuA domain: identification of substrate-binding residues in cytochrome c oxidase. Lappalainen P; Watmough NJ; Greenwood C; Saraste M Biochemistry; 1995 May; 34(17):5824-30. PubMed ID: 7727443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]