BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31449676)

  • 1. Biochemical pathway for the biosynthesis of the Cu
    Canonica F; Hennecke H; Glockshuber R
    FEBS Lett; 2019 Nov; 593(21):2977-2989. PubMed ID: 31449676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis and mechanism for metallochaperone-assisted assembly of the Cu
    Canonica F; Klose D; Ledermann R; Sauer MM; Abicht HK; Quade N; Gossert AD; Chesnov S; Fischer HM; Jeschke G; Hennecke H; Glockshuber R
    Sci Adv; 2019 Jul; 5(7):eaaw8478. PubMed ID: 31392273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation.
    Abicht HK; Schärer MA; Quade N; Ledermann R; Mohorko E; Capitani G; Hennecke H; Glockshuber R
    J Biol Chem; 2014 Nov; 289(47):32431-44. PubMed ID: 25274631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum.
    Serventi F; Youard ZA; Murset V; Huwiler S; Bühler D; Richter M; Luchsinger R; Fischer HM; Brogioli R; Niederer M; Hennecke H
    J Biol Chem; 2012 Nov; 287(46):38812-23. PubMed ID: 23012364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin-like protein TlpA from Bradyrhizobium japonicum is a reductant for the copper metallochaperone ScoI.
    Mohorko E; Abicht HK; Bühler D; Glockshuber R; Hennecke H; Fischer HM
    FEBS Lett; 2012 Nov; 586(23):4094-9. PubMed ID: 23123159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase.
    Morgada MN; Abriata LA; Cefaro C; Gajda K; Banci L; Vila AJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11771-6. PubMed ID: 26351686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-metal bonding in biology: EXAFS evidence for a 2.5 A copper-copper bond in the CuA center of cytochrome oxidase.
    Blackburn NJ; Barr ME; Woodruff WH; van der Oost J; de Vries S
    Biochemistry; 1994 Aug; 33(34):10401-7. PubMed ID: 8068678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans.
    Farrar JA; Lappalainen P; Zumft WG; Saraste M; Thomson AJ
    Eur J Biochem; 1995 Aug; 232(1):294-303. PubMed ID: 7556164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria.
    Pacheu-Grau D; Wasilewski M; Oeljeklaus S; Gibhardt CS; Aich A; Chudenkova M; Dennerlein S; Deckers M; Bogeski I; Warscheid B; Chacinska A; Rehling P
    J Mol Biol; 2020 Mar; 432(7):2067-2079. PubMed ID: 32061935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of Thermus thermophilus cytochrome oxidase.
    Chacón KN; Blackburn NJ
    J Am Chem Soc; 2012 Oct; 134(39):16401-12. PubMed ID: 22946616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking the seven lines: binuclear copper A in cytochrome c oxidase and nitrous oxide reductase.
    Kroneck PMH
    J Biol Inorg Chem; 2018 Jan; 23(1):27-39. PubMed ID: 29218634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans.
    Dash BP; Alles M; Bundschuh FA; Richter OH; Ludwig B
    Biochim Biophys Acta; 2015 Feb; 1847(2):202-211. PubMed ID: 25445316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of cytochrome-c oxidase.
    Denis M
    Biochimie; 1986 Mar; 68(3):459-70. PubMed ID: 2427124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different interaction modes of two cytochrome-c oxidase soluble CuA fragments with their substrates.
    Maneg O; Ludwig B; Malatesta F
    J Biol Chem; 2003 Nov; 278(47):46734-40. PubMed ID: 12937163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic insights into an extracytoplasmic copper trafficking pathway in Streptomyces lividans.
    Blundell KL; Hough MA; Vijgenboom E; Worrall JA
    Biochem J; 2014 May; 459(3):525-38. PubMed ID: 24548299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for Cu
    Llases ME; Lisa MN; Morgada MN; Giannini E; Alzari PM; Vila AJ
    FEBS J; 2020 Feb; 287(4):749-762. PubMed ID: 31348612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum.
    Bühler D; Rossmann R; Landolt S; Balsiger S; Fischer HM; Hennecke H
    J Biol Chem; 2010 May; 285(21):15704-13. PubMed ID: 20335176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of the CuA site in cytochrome-c oxidase of Paracoccus denitrificans by replacement of Met227 with isoleucine.
    Zickermann V; Verkhovsky M; Morgan J; Wikström M; Anemüller S; Bill E; Steffens GC; Ludwig B
    Eur J Biochem; 1995 Dec; 234(2):686-93. PubMed ID: 8536720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas stutzeri N2O reductase contains CuA-type sites.
    Scott RA; Zumft WG; Coyle CL; Dooley DM
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4082-6. PubMed ID: 2542963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer between cytochrome c and the isolated CuA domain: identification of substrate-binding residues in cytochrome c oxidase.
    Lappalainen P; Watmough NJ; Greenwood C; Saraste M
    Biochemistry; 1995 May; 34(17):5824-30. PubMed ID: 7727443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.