BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31449779)

  • 1. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes.
    Guo Y; Yang Y; Yi X; Zhou X
    Cryobiology; 2019 Oct; 90():63-70. PubMed ID: 31449779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform.
    Heo YS; Lee HJ; Hassell BA; Irimia D; Toth TL; Elmoazzen H; Toner M
    Lab Chip; 2011 Oct; 11(20):3530-7. PubMed ID: 21887438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification.
    Lai D; Ding J; Smith GW; Smith GD; Takayama S
    Hum Reprod; 2015 Jan; 30(1):37-45. PubMed ID: 25355589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and Experimental Investigation on Water-Me
    Yang Y; Zhou XL; Zhou NF; Shao WQ; Tao LR
    Cryo Letters; 2017; 38(1):37-42. PubMed ID: 28376138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.
    Choi JK; Huang H; He X
    Cryobiology; 2015 Jun; 70(3):269-72. PubMed ID: 25869750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of microfluidic technologies to human assisted reproduction.
    Smith GD; Takayama S
    Mol Hum Reprod; 2017 Apr; 23(4):257-268. PubMed ID: 28130394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of cryoprotectant removal by microfluidic chip on developmental capacity of oocytes].
    Yi X; Zhou X; Yang Y; Dai J; Zhang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Feb; 35(1):123-130. PubMed ID: 29745611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes.
    Lin L; Kragh PM; Purup S; Kuwayama M; Du Y; Zhang X; Yang H; Bolund L; Callesen H; Vajta G
    Reprod Fertil Dev; 2009; 21(2):338-44. PubMed ID: 19210925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated microfluidic device for single cell trapping and osmotic behavior investigation of mouse oocytes.
    Guo X; Chen Z; Memon K; Chen X; Zhao G
    Cryobiology; 2020 Feb; 92():267-271. PubMed ID: 31585113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos.
    Edgar DH; Gook DA
    Hum Reprod Update; 2012; 18(5):536-54. PubMed ID: 22537859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method.
    Miao S; Guo C; Jiang Z; Wei HX; Jiang X; Gu J; Hai Z; Wang T; Liu YH
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
    Davidson AF; Benson JD; Higgins AZ
    Theor Biol Med Model; 2014 Mar; 11():13. PubMed ID: 24649826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.
    Wang L; Liu J; Zhou GB; Hou YP; Li JJ; Zhu SE
    Biol Reprod; 2011 Nov; 85(5):884-94. PubMed ID: 21697515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loading equine oocytes with cryoprotective agents captured with a finite element method model.
    Içli S; Soleimani M; Oldenhof H; Sieme H; Wriggers P; Wolkers WF
    Sci Rep; 2021 Oct; 11(1):19812. PubMed ID: 34615933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High developmental rates of mouse oocytes cryopreserved by an optimized vitrification protocol: the effects of cryoprotectants, calcium and cumulus cells.
    Kohaya N; Fujiwara K; Ito J; Kashiwazaki N
    J Reprod Dev; 2011 Dec; 57(6):675-80. PubMed ID: 21778666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes.
    Nohalez A; Martinez CA; Gil MA; Almiñana C; Roca J; Martinez EA; Cuello C
    Theriogenology; 2015 Sep; 84(4):545-52. PubMed ID: 25998270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing human oocyte cryopreservation for fertility preservation patients: should we mature then freeze or freeze then mature?
    Lee JA; Barritt J; Moschini RM; Slifkin RE; Copperman AB
    Fertil Steril; 2013 Apr; 99(5):1356-62. PubMed ID: 23266213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porcine oocyte vitrification in optimized low toxicity solution with open pulled straws.
    Marco-Jiménez F; Casares-Crespo L; Vicente JS
    Zygote; 2014 May; 22(2):204-12. PubMed ID: 23102007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model.
    Liu J; Mullen S; Meng Q; Critser J; Dinnyes A
    Cryobiology; 2009 Oct; 59(2):127-34. PubMed ID: 19527701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of osmotic stress on the cell volume, metaphase II spindle and developmental potential of in vitro matured porcine oocytes.
    Mullen SF; Rosenbaum M; Critser JK
    Cryobiology; 2007 Jun; 54(3):281-9. PubMed ID: 17485076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.