These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31449779)
1. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes. Guo Y; Yang Y; Yi X; Zhou X Cryobiology; 2019 Oct; 90():63-70. PubMed ID: 31449779 [TBL] [Abstract][Full Text] [Related]
2. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Heo YS; Lee HJ; Hassell BA; Irimia D; Toth TL; Elmoazzen H; Toner M Lab Chip; 2011 Oct; 11(20):3530-7. PubMed ID: 21887438 [TBL] [Abstract][Full Text] [Related]
3. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Lai D; Ding J; Smith GW; Smith GD; Takayama S Hum Reprod; 2015 Jan; 30(1):37-45. PubMed ID: 25355589 [TBL] [Abstract][Full Text] [Related]
4. Numerical and Experimental Investigation on Water-Me Yang Y; Zhou XL; Zhou NF; Shao WQ; Tao LR Cryo Letters; 2017; 38(1):37-42. PubMed ID: 28376138 [TBL] [Abstract][Full Text] [Related]
5. Use of membrane transport models to design cryopreservation procedures for oocytes. Caliskan S; Liu D; Oldenhof H; Sieme H; Wolkers WF Anim Reprod Sci; 2024 Aug; 267():107536. PubMed ID: 38908169 [TBL] [Abstract][Full Text] [Related]
6. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary. Choi JK; Huang H; He X Cryobiology; 2015 Jun; 70(3):269-72. PubMed ID: 25869750 [TBL] [Abstract][Full Text] [Related]
7. Application of microfluidic technologies to human assisted reproduction. Smith GD; Takayama S Mol Hum Reprod; 2017 Apr; 23(4):257-268. PubMed ID: 28130394 [TBL] [Abstract][Full Text] [Related]
8. [Effect of cryoprotectant removal by microfluidic chip on developmental capacity of oocytes]. Yi X; Zhou X; Yang Y; Dai J; Zhang D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Feb; 35(1):123-130. PubMed ID: 29745611 [TBL] [Abstract][Full Text] [Related]
9. Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes. Lin L; Kragh PM; Purup S; Kuwayama M; Du Y; Zhang X; Yang H; Bolund L; Callesen H; Vajta G Reprod Fertil Dev; 2009; 21(2):338-44. PubMed ID: 19210925 [TBL] [Abstract][Full Text] [Related]
10. Oocytes Vitrification Using Automated Equipment Based on Microfluidic Chip. Shen J; Yu Z; Li W; Zhou X Ann Biomed Eng; 2024 Sep; ():. PubMed ID: 39320573 [TBL] [Abstract][Full Text] [Related]
11. An integrated microfluidic device for single cell trapping and osmotic behavior investigation of mouse oocytes. Guo X; Chen Z; Memon K; Chen X; Zhao G Cryobiology; 2020 Feb; 92():267-271. PubMed ID: 31585113 [TBL] [Abstract][Full Text] [Related]
12. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Edgar DH; Gook DA Hum Reprod Update; 2012; 18(5):536-54. PubMed ID: 22537859 [TBL] [Abstract][Full Text] [Related]
13. Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method. Miao S; Guo C; Jiang Z; Wei HX; Jiang X; Gu J; Hai Z; Wang T; Liu YH Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140151 [TBL] [Abstract][Full Text] [Related]
14. Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes. Davidson AF; Benson JD; Higgins AZ Theor Biol Med Model; 2014 Mar; 11():13. PubMed ID: 24649826 [TBL] [Abstract][Full Text] [Related]
15. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures. Wang L; Liu J; Zhou GB; Hou YP; Li JJ; Zhu SE Biol Reprod; 2011 Nov; 85(5):884-94. PubMed ID: 21697515 [TBL] [Abstract][Full Text] [Related]
16. High developmental rates of mouse oocytes cryopreserved by an optimized vitrification protocol: the effects of cryoprotectants, calcium and cumulus cells. Kohaya N; Fujiwara K; Ito J; Kashiwazaki N J Reprod Dev; 2011 Dec; 57(6):675-80. PubMed ID: 21778666 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional Laser-Induced Graphene-Based Microfluidic Chip for High-Performance Oocyte Cryopreservation with Low Concentration of Cryoprotectants. Li Y; Zhang J; Han W; Liu B; Zhai M; Li N; Wang Z; Zhao J Adv Healthc Mater; 2024 Sep; 13(23):e2400981. PubMed ID: 38885030 [TBL] [Abstract][Full Text] [Related]
18. Loading equine oocytes with cryoprotective agents captured with a finite element method model. Içli S; Soleimani M; Oldenhof H; Sieme H; Wriggers P; Wolkers WF Sci Rep; 2021 Oct; 11(1):19812. PubMed ID: 34615933 [TBL] [Abstract][Full Text] [Related]
19. Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes. Nohalez A; Martinez CA; Gil MA; Almiñana C; Roca J; Martinez EA; Cuello C Theriogenology; 2015 Sep; 84(4):545-52. PubMed ID: 25998270 [TBL] [Abstract][Full Text] [Related]
20. Optimizing human oocyte cryopreservation for fertility preservation patients: should we mature then freeze or freeze then mature? Lee JA; Barritt J; Moschini RM; Slifkin RE; Copperman AB Fertil Steril; 2013 Apr; 99(5):1356-62. PubMed ID: 23266213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]