These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31449825)

  • 21. Visually Guided Behavior and Optogenetically Induced Learning in Head-Fixed Flies Exploring a Virtual Landscape.
    Haberkern H; Basnak MA; Ahanonu B; Schauder D; Cohen JD; Bolstad M; Bruns C; Jayaraman V
    Curr Biol; 2019 May; 29(10):1647-1659.e8. PubMed ID: 31056392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MRTouch: Adding Touch Input to Head-Mounted Mixed Reality.
    Xiao R; Schwarz J; Throm N; Wilson AD; Benko H
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1653-1660. PubMed ID: 29543181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-demand calibration and evaluation for electromagnetically tracked laparoscope in augmented reality visualization.
    Liu X; Plishker W; Zaki G; Kang S; Kane TD; Shekhar R
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1163-71. PubMed ID: 27250853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.
    Chen X; Xu L; Wang Y; Wang H; Wang F; Zeng X; Wang Q; Egger J
    J Biomed Inform; 2015 Jun; 55():124-31. PubMed ID: 25882923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.
    Lahanas V; Loukas C; Georgiou K; Lababidi H; Al-Jaroudi D
    Surg Endosc; 2017 Dec; 31(12):5012-5023. PubMed ID: 28466361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New software dedicated to virtual mazes for human cognitive investigations.
    Machado ML; Lefèvre N; Philoxene B; Le Gall A; Madeleine S; Fleury P; Smith PF; Besnard S
    J Neurosci Methods; 2019 Nov; 327():108388. PubMed ID: 31408650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implementation and Evaluation of Walk-in-Place Using a Low-Cost Motion-Capture Device for Virtual Reality Applications.
    Shin R; Choi B; Choi SM; Lee S
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel Virtual Reality System for Auditory Tasks in Head-fixed Mice.
    Gao S; Webb J; Mridha Z; Banta A; Kemere C; McGinley M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2925-2928. PubMed ID: 33018619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining sensitivity/specificity of virtual reality-based neuropsychological tool for detecting residual abnormalities following sport-related concussion.
    Teel E; Gay M; Johnson B; Slobounov S
    Neuropsychology; 2016 May; 30(4):474-83. PubMed ID: 27045961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WeaVR: a self-contained and wearable immersive virtual environment simulation system.
    Hodgson E; Bachmann ER; Vincent D; Zmuda M; Waller D; Calusdian J
    Behav Res Methods; 2015 Mar; 47(1):296-307. PubMed ID: 24737097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual Morris water maze: opportunities and challenges.
    Thornberry C; Cimadevilla JM; Commins S
    Rev Neurosci; 2021 Dec; 32(8):887-903. PubMed ID: 33838098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A methodological framework to assess the accuracy of virtual reality hand-tracking systems: A case study with the Meta Quest 2.
    Abdlkarim D; Di Luca M; Aves P; Maaroufi M; Yeo SH; Miall RC; Holland P; Galea JM
    Behav Res Methods; 2024 Feb; 56(2):1052-1063. PubMed ID: 36781700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and research of music teaching system based on virtual reality system in the context of education informatization.
    Feng Y
    PLoS One; 2023; 18(10):e0285331. PubMed ID: 37796970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Training software using virtual-reality technology and pre-calculated effective dose data.
    Ding A; Zhang D; Xu XG
    Health Phys; 2009 May; 96(5):594-601. PubMed ID: 19359853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orientation in Virtual Reality Does Not Fully Measure Up to the Real-World.
    Kimura K; Reichert JF; Olson A; Pouya OR; Wang X; Moussavi Z; Kelly DM
    Sci Rep; 2017 Dec; 7(1):18109. PubMed ID: 29273759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.