These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 31450036)
1. Understanding kaolin effects on grapevine leaf and whole-canopy physiology during water stress and re-watering. Frioni T; Saracino S; Squeri C; Tombesi S; Palliotti A; Sabbatini P; Magnanini E; Poni S J Plant Physiol; 2019 Nov; 242():153020. PubMed ID: 31450036 [TBL] [Abstract][Full Text] [Related]
2. Kaolin Reduces ABA Biosynthesis Through the Inhibition of Neoxanthin Synthesis in Grapevines Under Water Deficit. Frioni T; Tombesi S; Sabbatini P; Squeri C; Lavado Rodas N; Palliotti A; Poni S Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32668754 [TBL] [Abstract][Full Text] [Related]
3. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants. Romero P; Botía P; Keller M J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386 [TBL] [Abstract][Full Text] [Related]
4. Morpho-structural and physiological response of container-grown Sangiovese and Montepulciano cvv. (Vitis vinifera) to re-watering after a pre-veraison limiting water deficit. Palliotti A; Tombesi S; Frioni T; Famiani F; Silvestroni O; Zamboni M; Poni S Funct Plant Biol; 2014 May; 41(6):634-647. PubMed ID: 32481019 [TBL] [Abstract][Full Text] [Related]
5. Molecular basis of rootstock-related tolerance to water deficit in Vitis vinifera L. cv. Sangiovese: A physiological and metabolomic combined approach. Lucini L; Miras-Moreno B; Busconi M; Marocco A; Gatti M; Poni S Plant Sci; 2020 Oct; 299():110600. PubMed ID: 32900438 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area. Zhang Y; Oren R; Kang S Tree Physiol; 2012 Mar; 32(3):262-79. PubMed ID: 22157418 [TBL] [Abstract][Full Text] [Related]
7. A functional-structural plant model that simulates whole- canopy gas exchange of grapevine plants (Vitis vinifera L.) under different training systems. Prieto JA; Louarn G; Perez Peña J; Ojeda H; Simonneau T; Lebon E Ann Bot; 2020 Sep; 126(4):647-660. PubMed ID: 31837221 [TBL] [Abstract][Full Text] [Related]
8. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees. Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD Ann Bot; 2006 Jul; 98(1):267-75. PubMed ID: 16735404 [TBL] [Abstract][Full Text] [Related]
9. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange. Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870 [TBL] [Abstract][Full Text] [Related]
10. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses. Palliotti A; Tombesi S; Frioni T; Silvestroni O; Lanari V; D'Onofrio C; Matarese F; Bellincontro A; Poni S J Plant Physiol; 2015 Aug; 185():84-92. PubMed ID: 26310367 [TBL] [Abstract][Full Text] [Related]
11. A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. Pou A; Medrano H; Flexas J; Tyerman SD Plant Cell Environ; 2013 Apr; 36(4):828-43. PubMed ID: 23046275 [TBL] [Abstract][Full Text] [Related]
12. Water use efficiency in Sangiovese grapes (Vitis vinifera L.) subjected to water stress before veraison: different levels of assessment lead to different conclusions. Merli MC; Gatti M; Galbignani M; Bernizzoni F; Magnanini E; Poni S Funct Plant Biol; 2015 Feb; 42(2):198-208. PubMed ID: 32480665 [TBL] [Abstract][Full Text] [Related]
13. Enhancing Yield and Physiological Performance by Foliar Applications of Chemically Inert Mineral Particles in a Rainfed Vineyard under Mediterranean Conditions. Petoumenou DG Plants (Basel); 2023 Mar; 12(7):. PubMed ID: 37050068 [TBL] [Abstract][Full Text] [Related]
14. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought. Brillante L; Belfiore N; Gaiotti F; Lovat L; Sansone L; Poni S; Tomasi D PLoS One; 2016; 11(6):e0156631. PubMed ID: 27294368 [TBL] [Abstract][Full Text] [Related]
15. Temperature and CO Greer DH Plant Physiol Biochem; 2017 Feb; 111():295-303. PubMed ID: 27987474 [TBL] [Abstract][Full Text] [Related]
16. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733 [TBL] [Abstract][Full Text] [Related]
17. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress. Ju YL; Yue XF; Zhao XF; Zhao H; Fang YL Plant Physiol Biochem; 2018 Sep; 130():501-510. PubMed ID: 30096685 [TBL] [Abstract][Full Text] [Related]
18. Phenology, Canopy Aging and Seasonal Carbon Balance as Related to Delayed Winter Pruning of Vitis vinifera L. cv. Sangiovese Grapevines. Gatti M; Pirez FJ; Chiari G; Tombesi S; Palliotti A; Merli MC; Poni S Front Plant Sci; 2016; 7():659. PubMed ID: 27242860 [TBL] [Abstract][Full Text] [Related]
19. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability. Hochberg U; Bonel AG; David-Schwartz R; Degu A; Fait A; Cochard H; Peterlunger E; Herrera JC Planta; 2017 Jun; 245(6):1091-1104. PubMed ID: 28214919 [TBL] [Abstract][Full Text] [Related]
20. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions. Diaz-Espejo A; Cuevas MV; Ribas-Carbo M; Flexas J; Martorell S; Fernández JE J Plant Physiol; 2012 Mar; 169(4):379-86. PubMed ID: 22209165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]