These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31450056)

  • 21. A new evolutionary algorithm for solving many-objective optimization problems.
    Zou X; Chen Y; Liu M; Kang L
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient non-dominated sorting method for evolutionary algorithms.
    Fang H; Wang Q; Tu YC; Horstemeyer MF
    Evol Comput; 2008; 16(3):355-84. PubMed ID: 18811246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Algorithm Using the Non-Dominated Tree to Improve Non-Dominated Sorting.
    Gustavsson P; Syberfeldt A
    Evol Comput; 2018; 26(1):89-116. PubMed ID: 28103060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimising the production of succinate and lactate in Escherichia coli using a hybrid of artificial bee colony algorithm and minimisation of metabolic adjustment.
    Tang PW; Choon YW; Mohamad MS; Deris S; Napis S
    J Biosci Bioeng; 2015 Mar; 119(3):363-8. PubMed ID: 25216804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated energy and flux balance based multiobjective framework for large-scale metabolic networks.
    Nagrath D; Avila-Elchiver M; Berthiaume F; Tilles AW; Messac A; Yarmush ML
    Ann Biomed Eng; 2007 Jun; 35(6):863-85. PubMed ID: 17393337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FOCuS: a metaheuristic algorithm for computing knockouts from genome-scale models for strain optimization.
    Mutturi S
    Mol Biosyst; 2017 Jun; 13(7):1355-1363. PubMed ID: 28530276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FastKnock: an efficient next-generation approach to identify all knockout strategies for strain optimization.
    Hassani L; Moosavi MR; Setoodeh P; Zare H
    Microb Cell Fact; 2024 Jan; 23(1):37. PubMed ID: 38287320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Many-objective BAT algorithm.
    Perwaiz U; Younas I; Anwar AA
    PLoS One; 2020; 15(6):e0234625. PubMed ID: 32525939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian Multiobjective Optimisation With Mixed Analytical and Black-Box Functions: Application to Tissue Engineering.
    Olofsson S; Mehrian M; Calandra R; Geris L; Deisenroth MP; Misener R
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):727-739. PubMed ID: 30028684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simulated annealing algorithm for prioritized multiobjective optimization--implementation in an adaptive model predictive control configuration.
    Aggelogiannaki E; Sarimveis H
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):902-15. PubMed ID: 17702288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
    Fiege J; McCurdy B; Potrebko P; Champion H; Cull A
    Med Phys; 2011 Sep; 38(9):5217-29. PubMed ID: 21978066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-objective optimisation of species distribution models for river management.
    Gobeyn S; Goethals PLM
    Water Res; 2019 Oct; 163():114863. PubMed ID: 31349090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions.
    Deb K; Mohan M; Mishra S
    Evol Comput; 2005; 13(4):501-25. PubMed ID: 16297281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Target Analysis and Design of Mitochondrial Metabolism.
    Angione C; Costanza J; Carapezza G; Lió P; Nicosia G
    PLoS One; 2015; 10(9):e0133825. PubMed ID: 26376088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Grid-based computational methods for the design of constraint-based parsimonious chemical reaction networks to simulate metabolite production: GridProd.
    Tamura T
    BMC Bioinformatics; 2018 Sep; 19(1):325. PubMed ID: 30217144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression.
    Gonçalves E; Pereira R; Rocha I; Rocha M
    J Comput Biol; 2012 Feb; 19(2):102-14. PubMed ID: 22300313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SSDesign: Computational metabolic pathway design based on flux variability using elementary flux modes.
    Toya Y; Shiraki T; Shimizu H
    Biotechnol Bioeng; 2015 Apr; 112(4):759-68. PubMed ID: 25408191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol.
    Hao T; Han B; Ma H; Fu J; Wang H; Wang Z; Tang B; Chen T; Zhao X
    Mol Biosyst; 2013 Aug; 9(8):2034-44. PubMed ID: 23666098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turnover Dependent Phenotypic Simulation: A Quantitative Constraint-Based Simulation Method That Accommodates All Main Strain Design Strategies.
    Pereira R; Vilaça P; Maia P; Nielsen J; Rocha I
    ACS Synth Biol; 2019 May; 8(5):976-988. PubMed ID: 30925047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.