These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31450090)

  • 1. Identification of phenylamide phytoalexins and characterization of inducible phenylamide metabolism in wheat.
    Ube N; Harada D; Katsuyama Y; Osaki-Oka K; Tonooka T; Ueno K; Taketa S; Ishihara A
    Phytochemistry; 2019 Nov; 167():112098. PubMed ID: 31450090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of Phenylamide Phytoalexins in Pathogen-Infected Barley.
    Ube N; Yabuta Y; Tohnooka T; Ueno K; Taketa S; Ishihara A
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31698855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of methoxylchalcones produced in response to CuCl
    Ube N; Katsuyama Y; Kariya K; Tebayashi SI; Sue M; Tohnooka T; Ueno K; Taketa S; Ishihara A
    Phytochemistry; 2021 Apr; 184():112650. PubMed ID: 33529859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced accumulation of tyramine, serotonin, and related amines in response to Bipolaris sorokiniana infection in barley.
    Ishihara A; Kumeda R; Hayashi N; Yagi Y; Sakaguchi N; Kokubo Y; Ube N; Tebayashi SI; Ueno K
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1090-1098. PubMed ID: 28485206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced phenylamide accumulation in response to pathogen infection and hormone treatment in rice (Oryza sativa).
    Morimoto N; Ueno K; Teraishi M; Okumoto Y; Mori N; Ishihara A
    Biosci Biotechnol Biochem; 2018 Mar; 82(3):407-416. PubMed ID: 29424281
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Singh UB; Malviya D; Singh S; Kumar M; Sahu PK; Singh HV; Kumar S; Roy M; Imran M; Rai JP; Sharma AK; Saxena AK
    Front Microbiol; 2019; 10():1697. PubMed ID: 31417511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of hydroxycinnamic acid amides in winter wheat under snow.
    Jin S; Yoshida M; Nakajima T; Murai A
    Biosci Biotechnol Biochem; 2003 Jun; 67(6):1245-9. PubMed ID: 12843649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis.
    Cho MH; Lee SW
    Int J Mol Sci; 2015 Dec; 16(12):29120-33. PubMed ID: 26690131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and structural characterization of agmatine coumaroyltransferase in Triticeae, the key regulator of hydroxycinnamic acid amide accumulation.
    Yamane M; Takenoya M; Yajima S; Sue M
    Phytochemistry; 2021 Sep; 189():112825. PubMed ID: 34119689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial activity of UV-induced phenylamides from rice leaves.
    Park HL; Yoo Y; Hahn TR; Bhoo SH; Lee SW; Cho MH
    Molecules; 2014 Nov; 19(11):18139-51. PubMed ID: 25383752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat.
    Kettle AJ; Batley J; Benfield AH; Manners JM; Kazan K; Gardiner DM
    Mol Plant Pathol; 2015 Dec; 16(9):946-62. PubMed ID: 25727347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice.
    Park HL; Lee SW; Jung KH; Hahn TR; Cho MH
    Phytochemistry; 2013 Dec; 96():57-71. PubMed ID: 24035516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum.
    Zhou W; Eudes F; Laroche A
    Proteomics; 2006 Aug; 6(16):4599-609. PubMed ID: 16858732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, a High Gibberellin Producer Pathogen.
    Siciliano I; Amaral Carneiro G; Spadaro D; Garibaldi A; Gullino ML
    J Agric Food Chem; 2015 Sep; 63(37):8134-42. PubMed ID: 26323788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat.
    Mishra S; Singh BR; Singh A; Keswani C; Naqvi AH; Singh HB
    PLoS One; 2014; 9(5):e97881. PubMed ID: 24840186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jasmonoyl-l-isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves.
    Miyamoto K; Enda I; Okada T; Sato Y; Watanabe K; Sakazawa T; Yumoto E; Shibata K; Asahina M; Iino M; Yokota T; Okada K; Yamane H
    Biosci Biotechnol Biochem; 2016 Oct; 80(10):1934-8. PubMed ID: 27240428
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Al-Sadi AM
    Front Cell Infect Microbiol; 2021; 11():584899. PubMed ID: 33777829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phytoalexin camalexin induces fundamental changes in the proteome of Alternaria brassicicola different from those caused by brassinin.
    Pedras MS; Minic Z; Abdoli A
    Fungal Biol; 2014 Jan; 118(1):83-93. PubMed ID: 24433679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana.
    Muroi A; Ishihara A; Tanaka C; Ishizuka A; Takabayashi J; Miyoshi H; Nishioka T
    Planta; 2009 Aug; 230(3):517-27. PubMed ID: 19521717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum.
    Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM
    BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.