BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31450101)

  • 1. The change of surface charge by lithium ion coating enhances protein adsorption on titanium.
    Isoshima K; Ueno T; Arai Y; Saito H; Chen P; Tsutsumi Y; Hanawa T; Wakabayashi N
    J Mech Behav Biomed Mater; 2019 Dec; 100():103393. PubMed ID: 31450101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium-Modified TiO
    Wu H; Ueno T; Nozaki K; Xu H; Nakano Y; Chen P; Wakabayashi N
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55232-55243. PubMed ID: 38014813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion.
    Feng B; Weng J; Yang BC; Qu SX; Zhang XD
    Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.
    Hori N; Ueno T; Suzuki T; Yamada M; Att W; Okada S; Ohno A; Aita H; Kimoto K; Ogawa T
    Int J Oral Maxillofac Implants; 2010; 25(1):49-62. PubMed ID: 20209187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment.
    Kern T; Yang Y; Glover R; Ong JL
    Implant Dent; 2005 Mar; 14(1):70-6. PubMed ID: 15764948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior.
    Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL
    Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium.
    Bumgardner JD; Wiser R; Elder SH; Jouett R; Yang Y; Ong JL
    J Biomater Sci Polym Ed; 2003; 14(12):1401-9. PubMed ID: 14870943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Functionalization of Ti6Al4V via Self-assembled Monolayers for Improved Protein Adsorption and Fibroblast Adhesion.
    Hasan A; Saxena V; Pandey LM
    Langmuir; 2018 Mar; 34(11):3494-3506. PubMed ID: 29489380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts.
    Wei J; Igarashi T; Okumori N; Igarashi T; Maetani T; Liu B; Yoshinari M
    Biomed Mater; 2009 Aug; 4(4):045002. PubMed ID: 19525576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion.
    Toffoli A; Parisi L; Bianchi MG; Lumetti S; Bussolati O; Macaluso GM
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110250. PubMed ID: 31761226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation.
    Cai K; Frant M; Bossert J; Hildebrand G; Liefeith K; Jandt KD
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):1-8. PubMed ID: 16679008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption.
    Deligianni DD; Katsala N; Ladas S; Sotiropoulou D; Amedee J; Missirlis YF
    Biomaterials; 2001 Jun; 22(11):1241-51. PubMed ID: 11336296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Cell Delivery System Exploiting Synergy between Fresh Titanium and Fibronectin.
    Hirota M; Hori N; Sugita Y; Ikeda T; Park W; Saruta J; Ogawa T
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin.
    Sousa SR; Lamghari M; Sampaio P; Moradas-Ferreira P; Barbosa MA
    J Biomed Mater Res A; 2008 Feb; 84(2):281-90. PubMed ID: 17607748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic control of protein adsorption on UV-photofunctionalized titanium.
    Hori N; Ueno T; Minamikawa H; Iwasa F; Yoshino F; Kimoto K; Lee MC; Ogawa T
    Acta Biomater; 2010 Oct; 6(10):4175-80. PubMed ID: 20466081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW; Kim YJ; Jang JH
    Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific ultraviolet-C irradiation energy for functionalization of titanium surface to increase osteoblastic cellular attachment.
    Uchiyama H; Yamada M; Ishizaki K; Sakurai K
    J Biomater Appl; 2014 May; 28(9):1419-29. PubMed ID: 24287983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface oxide net charge of a titanium alloy: modulation of fibronectin-activated attachment and spreading of osteogenic cells.
    Rapuano BE; MacDonald DE
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):95-103. PubMed ID: 20884181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adsorption on titanium surfaces and their effect on osteoblast attachment.
    Yang Y; Cavin R; Ong JL
    J Biomed Mater Res A; 2003 Oct; 67(1):344-9. PubMed ID: 14517894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.