These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31450149)

  • 1. Commentary health risks from climate fix: The downside of energy storage batteries.
    Gottesfeld P
    Environ Res; 2019 Nov; 178():108677. PubMed ID: 31450149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments.
    Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M
    J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.
    Grützke M; Krüger S; Kraft V; Vortmann B; Rothermel S; Winter M; Nowak S
    ChemSusChem; 2015 Oct; 8(20):3433-8. PubMed ID: 26360935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact on global metal flows arising from the use of portable rechargeable batteries.
    Rydh CJ; Svärd B
    Sci Total Environ; 2003 Jan; 302(1-3):167-84. PubMed ID: 12526907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies.
    Windisch-Kern S; Gerold E; Nigl T; Jandric A; Altendorfer M; Rutrecht B; Scherhaufer S; Raupenstrauch H; Pomberger R; Antrekowitsch H; Part F
    Waste Manag; 2022 Feb; 138():125-139. PubMed ID: 34875455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe.
    Abdelbaky M; Peeters JR; Dewulf W
    Waste Manag; 2021 Apr; 125():1-9. PubMed ID: 33667978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward sustainable and systematic recycling of spent rechargeable batteries.
    Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R
    Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lead-acid battery industry in China: outlook for production and recycling.
    Tian X; Wu Y; Gong Y; Zuo T
    Waste Manag Res; 2015 Nov; 33(11):986-94. PubMed ID: 26341636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Farming for battery metals.
    Nkrumah PN; Echevarria G; Erskine PD; van der Ent A
    Sci Total Environ; 2022 Jun; 827():154092. PubMed ID: 35219682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery.
    Lei S; Sun W; Yang Y
    Environ Sci Technol; 2024 Feb; 58(8):3609-3628. PubMed ID: 38329241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China.
    Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z
    Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of industrial valuable metals from household battery waste.
    Ebin B; Petranikova M; Steenari BM; Ekberg C
    Waste Manag Res; 2019 Feb; 37(2):168-175. PubMed ID: 30632933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of LiNi
    Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z
    Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.