These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31450149)

  • 21. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2020 Jan; 54(1):9-25. PubMed ID: 31849217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits.
    Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z
    Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Recombination of Elements in Spent Lithium-Ion Batteries to Recover High-Value γ-LiAlO
    Huang Z; Qiu R; Lin K; Ruan J; Xu Z
    Environ Sci Technol; 2021 Jun; 55(11):7643-7653. PubMed ID: 33983726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on the recycling of spent lithium iron phosphate batteries.
    Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y
    J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target.
    Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S
    J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Waste battery treatment options: comparing their environmental performance.
    Briffaerts K; Spirinckx C; Van der Linden A; Vrancken K
    Waste Manag; 2009 Aug; 29(8):2321-31. PubMed ID: 19386482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.
    Majeau-Bettez G; Hawkins TR; Strømman AH
    Environ Sci Technol; 2011 May; 45(10):4548-54. PubMed ID: 21506538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Current Process for the Recycling of Spent Lithium Ion Batteries.
    Zhou LF; Yang D; Du T; Gong H; Luo WB
    Front Chem; 2020; 8():578044. PubMed ID: 33344413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.
    Kang DH; Chen M; Ogunseitan OA
    Environ Sci Technol; 2013 May; 47(10):5495-503. PubMed ID: 23638841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Rationale for differentiated sanitary protection zones for battery recycling enterprises in modern conditions].
    Pinigin MA; Popov BA; Sabirova ZF; Budarina OV; Ul'ianova AV
    Gig Sanit; 2013; (6):90-2. PubMed ID: 24624832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of lithium-ion battery scrap generation from electric vehicles in Brazil.
    Cabral-Neto JP; de Mendonça Pimentel RM; Santos SM; Silva MM
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):23070-23078. PubMed ID: 36316550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Battery technologies for large-scale stationary energy storage.
    Soloveichik GL
    Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China.
    Yang H; Song X; Zhang X; Lu B; Yang D; Li B
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation and management of waste electric vehicle batteries in China.
    Xu C; Zhang W; He W; Li G; Huang J; Zhu H
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20825-20830. PubMed ID: 28803394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; He S; Gao Y; Peng J
    Waste Manag Res; 2019 Aug; 37(8):767-780. PubMed ID: 31218930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmentally-friendly lithium recycling from a spent organic li-ion battery.
    Renault S; Brandell D; Edström K
    ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.