These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31450186)

  • 1. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis.
    Zou M; Zhou J; Xu L; Song J; Liu S; Li X
    Micron; 2019 Nov; 126():102735. PubMed ID: 31450186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the structural features and geometric parameters affecting the axial mechanical properties of the primary feather rachis.
    Zhou J; Zou M; Xu S; Li X; Song J; Qi Y
    Microsc Res Tech; 2022 Mar; 85(3):861-874. PubMed ID: 34664756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and compression resistance of bean goose (Anser fabalis) feather shaft.
    Zou M; Xu L; Zhou J; Song J; Liu S; Li X
    Microsc Res Tech; 2020 Feb; 83(2):156-164. PubMed ID: 31659818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seagull feather shaft: Correlation between structure and mechanical response.
    Wang B; Meyers MA
    Acta Biomater; 2017 Jan; 48():270-288. PubMed ID: 27818305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopy imaging and modeling study on the mechanical properties of the primary flight feather shaft of the bean goose, Anser fabalis.
    Liu C; Xu L; Li X; Liu Y; Qi Y; Sun J; Zou M
    Microsc Res Tech; 2022 Jul; 85(7):2446-2454. PubMed ID: 35274785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy.
    Laurent CM; Dyke JM; Cook RB; Dyke G; de Kat R
    J Struct Biol; 2020 Jul; 211(1):107529. PubMed ID: 32416130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural tissue-engineering in the rachis and barbs of bird feathers.
    Lingham-Soliar T
    Sci Rep; 2017 Mar; 7():45162. PubMed ID: 28345593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure of flight feathers under uniaxial compression.
    Schelestow K; Troncoso OP; Torres FG
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():923-931. PubMed ID: 28576068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers.
    Alibardi L
    Anat Sci Int; 2010 Jun; 85(2):79-91. PubMed ID: 19714292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanical properties of bird feather rachises: exploring naturally occurring fibre reinforced laminar composites.
    Laurent CM; Palmer C; Boardman RP; Dyke G; Cook RB
    J R Soc Interface; 2014 Dec; 11(101):20140961. PubMed ID: 25339689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rachis morphology cannot accurately predict the mechanical performance of primary feathers in extant (and therefore fossil) feathered flyers.
    Lees J; Garner T; Cooper G; Nudds R
    R Soc Open Sci; 2017 Feb; 4(2):160927. PubMed ID: 28386445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering.
    Lingham-Soliar T; Bonser RH; Wesley-Smith J
    Proc Biol Sci; 2010 Apr; 277(1685):1161-8. PubMed ID: 20018788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new helical crossed-fibre structure of β-keratin in flight feathers and its biomechanical implications.
    Lingham-Soliar T; Murugan N
    PLoS One; 2013; 8(6):e65849. PubMed ID: 23762440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are melanized feather barbs stronger?
    Butler M; Johnson AS
    J Exp Biol; 2004 Jan; 207(Pt 2):285-93. PubMed ID: 14668312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired avian feather designs.
    Sullivan TN; Hung TT; Velasco-Hogan A; Meyers MA
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110066. PubMed ID: 31546447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and comparison of protein secondary structures in the rachis of avian flight feathers.
    Lin PY; Huang PY; Lee YC; Ng CS
    PeerJ; 2022; 10():e12919. PubMed ID: 35251779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electron microscope study of the fine structure of feather keratin.
    FILSHIE BK; ROGERS GE
    J Cell Biol; 1962 Apr; 13(1):1-12. PubMed ID: 13892901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components.
    Liu ZQ; Jiao D; Meyers MA; Zhang ZF
    Acta Biomater; 2015 Apr; 17():137-51. PubMed ID: 25662166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
    Alibardi L; Toni M
    Prog Histochem Cytochem; 2008; 43(1):1-69. PubMed ID: 18394491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.