These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31450411)

  • 1. Use of recombinant proteins as a simple and robust normalization method for untargeted proteomics screening: exhaustive performance assessment.
    Anjo SI; Simões I; Castanheira P; Grãos M; Manadas B
    Talanta; 2019 Dec; 205():120163. PubMed ID: 31450411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method.
    Narasimhan M; Kannan S; Chawade A; Bhattacharjee A; Govekar R
    J Transl Med; 2019 May; 17(1):184. PubMed ID: 31151397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for Standardizing High-to-Moderate Abundance Protein Biomarker Assessments Through an MRM-with-Standard-Peptides Quantitative Approach.
    Percy AJ; Yang J; Chambers AG; Mohammed Y; Miliotis T; Borchers CH
    Adv Exp Med Biol; 2016; 919():515-530. PubMed ID: 27975233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo internal standard approach for label-free quantitative proteomics.
    Tabata T; Sato T; Kuromitsu J; Oda Y
    Anal Chem; 2007 Nov; 79(22):8440-5. PubMed ID: 17929902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standardization approaches in absolute quantitative proteomics with mass spectrometry.
    Calderón-Celis F; Encinar JR; Sanz-Medel A
    Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic evaluation of normalization methods in quantitative label-free proteomics.
    Välikangas T; Suomi T; Elo LL
    Brief Bioinform; 2018 Jan; 19(1):1-11. PubMed ID: 27694351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWATH enables precise label-free quantification on proteome scale.
    Huang Q; Yang L; Luo J; Guo L; Wang Z; Yang X; Jin W; Fang Y; Ye J; Shan B; Zhang Y
    Proteomics; 2015 Apr; 15(7):1215-23. PubMed ID: 25560523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next Generation Proteomics for Clinical Biomarker Detection Using SWATH-MS.
    Lin Q; Tan HT; Chung MCM
    Methods Mol Biol; 2019; 1977():3-15. PubMed ID: 30980318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reference library of peripheral blood mononuclear cells for SWATH-MS analysis.
    Silva C; Santa C; Anjo SI; Manadas B
    Proteomics Clin Appl; 2016 Jul; 10(7):760-4. PubMed ID: 27188786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MSE for Label-Free Absolute Protein Quantification in Complex Proteomes.
    Helm S; Baginsky S
    Methods Mol Biol; 2018; 1696():235-247. PubMed ID: 29086408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.
    Tu C; Shen S; Sheng Q; Shyr Y; Qu J
    J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free and Standard-Free Absolute Quantitative Proteomics Using the "Total Protein" and "Proteomic Ruler" Approaches.
    Wiśniewski JR
    Methods Enzymol; 2017; 585():49-60. PubMed ID: 28109442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of High-Quality SWATH
    Schilling B; Gibson BW; Hunter CL
    Methods Mol Biol; 2017; 1550():223-233. PubMed ID: 28188533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration Using a Single-Point External Reference Material Harmonizes Quantitative Mass Spectrometry Proteomics Data between Platforms and Laboratories.
    Pino LK; Searle BC; Huang EL; Noble WS; Hoofnagle AN; MacCoss MJ
    Anal Chem; 2018 Nov; 90(21):13112-13117. PubMed ID: 30350613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma.
    Sandim V; Pereira Dde A; Kalume DE; Oliveira-Carvalho AL; Ornellas AA; Soares MR; Alves G; Zingali RB
    Urol Oncol; 2016 Jan; 34(1):5.e11-25. PubMed ID: 26420021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering.
    Wang H; Alvarez S; Hicks LM
    J Proteome Res; 2012 Jan; 11(1):487-501. PubMed ID: 22059437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current trends in quantitative proteomics - an update.
    Li H; Han J; Pan J; Liu T; Parker CE; Borchers CH
    J Mass Spectrom; 2017 May; 52(5):319-341. PubMed ID: 28418607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normalization Method Utilizing Endogenous Proteins for Quantitative Proteomics.
    Yan K; Yang Y; Zhang Y; Zhao W; Liao L
    J Am Soc Mass Spectrom; 2020 Jul; 31(7):1380-1388. PubMed ID: 32268065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A label-free differential proteomic analysis of mouse bronchoalveolar lavage fluid exposed to ultrafine carbon black.
    Chiu KH; Lee WL; Chang CC; Chen SC; Chang YC; Ho MN; Hsu JF; Liao PC
    Anal Chim Acta; 2010 Jul; 673(2):160-6. PubMed ID: 20599030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.