BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31450441)

  • 1. One-step detection of human papilloma viral infection using quantum dot-nucleotide interaction specificity.
    Jimenez Jimenez AM; Moulick A; Bhowmick S; Strmiska V; Gagic M; Horakova Z; Kostrica R; Masarik M; Heger Z; Adam V
    Talanta; 2019 Dec; 205():120111. PubMed ID: 31450441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18.
    Shamsipur M; Nasirian V; Mansouri K; Barati A; Veisi-Raygani A; Kashanian S
    J Pharm Biomed Anal; 2017 Mar; 136():140-147. PubMed ID: 28081500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein.
    Hu P; Wang X; Wei L; Dai R; Yuan X; Huang K; Chen P
    J Mater Chem B; 2019 Aug; 7(31):4778-4783. PubMed ID: 31389950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization.
    Qiu Z; Shu J; He Y; Lin Z; Zhang K; Lv S; Tang D
    Biosens Bioelectron; 2017 Jan; 87():18-24. PubMed ID: 27504793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence "turn on-off" nanosensor for lysozyme detection.
    Song Y; Li Y; Liu Z; Liu L; Wang X; Su X; Ma Q
    Biosens Bioelectron; 2014 Nov; 61():9-13. PubMed ID: 24841088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive single-color fluorescence "off-on" switch system for dsDNA detection based on quantum dots-ruthenium assembling dyads.
    Zhang R; Zhao D; Ding HG; Huang YX; Zhong HZ; Xie HY
    Biosens Bioelectron; 2014 Jun; 56():51-7. PubMed ID: 24463196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultrasensitive biosensor for DNA detection based on hybridization chain reaction coupled with the efficient quenching of a ruthenium complex to CdTe quantum dots.
    Liu Y; Luo M; Yan J; Xiang X; Ji X; Zhou G; He Z
    Chem Commun (Camb); 2013 Aug; 49(67):7424-6. PubMed ID: 23863907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive CVG-AFS/ICP-MS label-free nucleic acid and protein assays based on a selective cation exchange reaction and simple filtration separation.
    Chen P; Huang K; Dai R; Sawyer E; Sun K; Ying B; Wei X; Geng J
    Analyst; 2019 Apr; 144(8):2797-2802. PubMed ID: 30882111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate.
    Wang L; Liu S; Liang W; Li D; Yang J; He Y
    J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean.
    Li Y; Sun L; Qian J; Long L; Li H; Liu Q; Cai J; Wang K
    Biosens Bioelectron; 2017 Jun; 92():26-32. PubMed ID: 28182975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive quantum dots-based "OFF-ON" fluorescent sensor for ruthenium anticancer drugs and ctDNA.
    Huang S; Zhu F; Qiu H; Xiao Q; Zhou Q; Su W; Hu B
    Colloids Surf B Biointerfaces; 2014 May; 117():240-7. PubMed ID: 24657609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous detection of TNOS and P35S in transgenic soybean based on magnetic bicolor fluorescent probes.
    Li Y; Hao N; Luo S; Liu Q; Sun L; Qian J; Cai J; Wang K
    Talanta; 2020 May; 212():120764. PubMed ID: 32113537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122.
    Lv S; Chen F; Chen C; Chen X; Gong H; Cai C
    Talanta; 2017 Apr; 165():659-663. PubMed ID: 28153313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA.
    Moulick A; Milosavljevic V; Vlachova J; Podgajny R; Hynek D; Kopel P; Adam V
    Int J Nanomedicine; 2017; 12():1277-1291. PubMed ID: 28243089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.
    Zhao Y; Tan L; Gao X; Jie G; Huang T
    Biosens Bioelectron; 2018 Jul; 110():239-245. PubMed ID: 29627645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and rapid label-free fluorimetric biosensor for protamine detection based on glutathione-capped CdTe quantum dots aggregation.
    Ensafi AA; Kazemifard N; Rezaei B
    Biosens Bioelectron; 2015 Sep; 71():243-248. PubMed ID: 25912680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CdTe QDs based fluorescent sensor for the determination of gallic acid in tea.
    Tan X; Li Q; Yang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117356. PubMed ID: 31351422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semiconductor quantum dot-based ratiometric electrochemical aptasensor for the selective and reliable determination of aflatoxin B1.
    Wang C; Qian J; An K; Lu X; Huang X
    Analyst; 2019 Aug; 144(16):4772-4780. PubMed ID: 31268094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.
    Sheng Z; Chen L
    Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-Capped CdTe Quantum Dots as a Fluorescent Nanosensor for Detection of Copper Ions in Environmental Water Sample.
    Elmizadeh H; Soleimani M; Faridbod F; Bardajee GR
    J Fluoresc; 2017 Nov; 27(6):2323-2333. PubMed ID: 28936785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.