These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31450442)

  • 21. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of MutS binding with single thymine-guanine mismatched DNA.
    Su X; Wu YJ; Robelek R; Knoll W
    Front Biosci; 2005 Jan; 10():268-74. PubMed ID: 15574367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplified single base-pair mismatch detection via aggregation of exonuclease-sheared gold nanoparticles.
    Wu S; Liang P; Yu H; Xu X; Liu Y; Lou X; Xiao Y
    Anal Chem; 2014 Apr; 86(7):3461-7. PubMed ID: 24611947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein.
    Su X; Robelek R; Wu Y; Wang G; Knoll W
    Anal Chem; 2004 Jan; 76(2):489-94. PubMed ID: 14719903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.
    Chen YT; Hsu CL; Hou SY
    Anal Biochem; 2008 Apr; 375(2):299-305. PubMed ID: 18211817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate and visual discrimination of single-base mismatch by utilization of binary DNA probes in gold nanoparticles-based biosensing strategy.
    Zhou W; Ren J; Zhu J; Zhou Z; Dong S
    Talanta; 2016 Dec; 161():528-534. PubMed ID: 27769442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic discrimination of DNA single-base mutations by localized surface plasmon resonance.
    Rapisarda A; Giamblanco N; Marletta G
    J Colloid Interface Sci; 2017 Feb; 487():141-148. PubMed ID: 27764653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fe-Au Nanoparticle-Coupling for Ultrasensitive Detections of Circulating Tumor DNA.
    Hu P; Zhang S; Wu T; Ni D; Fan W; Zhu Y; Qian R; Shi J
    Adv Mater; 2018 Aug; 30(31):e1801690. PubMed ID: 29931715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flash signal amplification approach for ultrasensitive and rapid detection of single nucleotide polymorphisms in tuberculosis.
    Chen WT; Chiu PY; Chen CF
    Biosens Bioelectron; 2023 Oct; 237():115514. PubMed ID: 37423064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS.
    Masarík M; Cahová K; Kizek R; Palecek E; Fojta M
    Anal Bioanal Chem; 2007 May; 388(1):259-70. PubMed ID: 17333147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA dangling-end-induced colloidal stabilization of gold nanoparticles for colorimetric single-nucleotide polymorphism genotyping.
    Akiyama Y; Shikagawa H; Kanayama N; Takarada T; Maeda M
    Chemistry; 2014 Dec; 20(52):17420-5. PubMed ID: 25349129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient DNA-fueled molecular machine for the discrimination of single-base changes.
    Song T; Xiao S; Yao D; Huang F; Hu M; Liang H
    Adv Mater; 2014 Sep; 26(35):6181-5. PubMed ID: 25066311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition.
    Liu F; Guo Y; Hu Y; Zhang X; Zheng X
    Anal Bioanal Chem; 2019 Sep; 411(22):5845-5854. PubMed ID: 31278549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Design Combining Isothermal Exponential Amplification and Gold-Nanoparticles Visualization for Rapid Detection of miRNAs.
    Jiang J; Zhang B; Zhang C; Guan Y
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bending of Canonical and G/T Mismatched DNAs.
    Bouchal T; Durník I; Kulhánek P
    J Chem Inf Model; 2021 Dec; 61(12):6000-6011. PubMed ID: 34779609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface.
    Stobiecka M; Hepel M
    Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A colorimetric method for point mutation detection using high-fidelity DNA ligase.
    Li J; Chu X; Liu Y; Jiang JH; He Z; Zhang Z; Shen G; Yu RQ
    Nucleic Acids Res; 2005 Oct; 33(19):e168. PubMed ID: 16257979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signal-on impedimetric electrochemical DNA sensor using dithiothreitol modified gold nanoparticle tag for highly sensitive DNA detection.
    Wang C; Yuan X; Liu X; Gao Q; Qi H; Zhang C
    Anal Chim Acta; 2013 Oct; 799():36-43. PubMed ID: 24091372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.
    Tan YN; Lee KH; Su X
    Anal Chem; 2011 Jun; 83(11):4251-7. PubMed ID: 21524056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct application of gold nanoparticles to one-pot electrochemical biosensors.
    Chen G; Tong H; Gao T; Chen Y; Li G
    Anal Chim Acta; 2014 Nov; 849():1-6. PubMed ID: 25300210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F; Sun C; Lv X; You J
    Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.