BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31450622)

  • 1. Identification of Msp1-Induced Signaling Components in Rice Leaves by Integrated Proteomic and Phosphoproteomic Analysis.
    Gupta R; Min CW; Kim YJ; Kim ST
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMT-based quantitative membrane proteomics identified PRRs potentially involved in the perception of MSP1 in rice leaves.
    Min CW; Jang JW; Lee GH; Gupta R; Yoon J; Park HJ; Cho HS; Park SR; Kwon SW; Cho LH; Jung KH; Kim YJ; Wang Y; Kim ST
    J Proteomics; 2022 Sep; 267():104687. PubMed ID: 35914717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves.
    Meng Q; Gupta R; Min CW; Kim J; Kramer K; Wang Y; Park SR; Finkemeier I; Kim ST
    J Proteomics; 2019 Mar; 196():120-130. PubMed ID: 29970347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of post-translational modification dynamics unveiled novel insights into Rice responses to MSP1.
    Lee GH; Min CW; Jang JW; Wang Y; Jeon JS; Gupta R; Kim ST
    J Proteomics; 2023 Sep; 287():104970. PubMed ID: 37467888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative phosphoproteome analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars.
    Li Y; Ye Z; Nie Y; Zhang J; Wang GL; Wang Z
    J Proteomics; 2015 Feb; 115():66-80. PubMed ID: 25540933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Analysis of
    Meng Q; Gupta R; Kwon SJ; Wang Y; Agrawal GK; Rakwal R; Park SR; Kim ST
    Plant Pathol J; 2018 Aug; 34(4):257-268. PubMed ID: 30140180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMT-based quantitative proteome data of MSP1 overexpressed rice.
    Min CW; Jang JW; Lee GH; Gupta R; Kim ST
    Data Brief; 2023 Feb; 46():108791. PubMed ID: 36483478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iTRAQ proteomics reveals the regulatory response to Magnaporthe oryzae in durable resistant vs. susceptible rice genotypes.
    Ma Z; Wang L; Zhao M; Gu S; Wang C; Zhao J; Tang Z; Gao H; Zhang L; Fu L; Yin Y; He N; Zheng W; Xu Z
    PLoS One; 2020; 15(1):e0227470. PubMed ID: 31923921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice.
    Wang Y; Wu J; Kim SG; Tsuda K; Gupta R; Park SY; Kim ST; Kang KY
    Mol Plant Microbe Interact; 2016 Apr; 29(4):299-312. PubMed ID: 26780420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dataset on post-translational modifications proteome analysis of MSP1-overexpressing rice leaf proteins.
    Lee GH; Min CW; Jang JW; Gupta R; Kim ST
    Data Brief; 2023 Oct; 50():109573. PubMed ID: 37808536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative phosphoproteomic analysis of blast resistant and susceptible rice cultivars in response to salicylic acid.
    Sun R; Qin S; Zhang T; Wang Z; Li H; Li Y; Nie Y
    BMC Plant Biol; 2019 Oct; 19(1):454. PubMed ID: 31660870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and Molecular Alterations Promoted by Schizotetranychus oryzae Mite Infestation in Rice Leaves.
    Buffon G; Blasi ÉA; Adamski JM; Ferla NJ; Berger M; Santi L; Lavallée-Adam M; Yates JR; Beys-da-Silva WO; Sperotto RA
    J Proteome Res; 2016 Feb; 15(2):431-46. PubMed ID: 26667653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers.
    Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P
    Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon Magnaporthe oryzae infection.
    Chen X; Xu Q; Yue Y; Duan Y; Liu H; Chen X; Huang J; Zheng L
    Plant Commun; 2023 May; 4(3):100550. PubMed ID: 36654509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).
    Qiu J; Hou Y; Tong X; Wang Y; Lin H; Liu Q; Zhang W; Li Z; Nallamilli BR; Zhang J
    Plant Mol Biol; 2016 Feb; 90(3):249-65. PubMed ID: 26613898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath.
    Khan MM; Jan A; Karibe H; Komatsu S
    Plant Mol Biol; 2005 May; 58(1):27-40. PubMed ID: 16028114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Status of Proteomic Studies on Defense Responses in Rice.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2016; 19():7-12. PubMed ID: 26364119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM
    J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae.
    Zhou Z; Pang Z; Li G; Lin C; Wang J; Lv Q; He C; Zhu L
    Mol Plant Pathol; 2016 Oct; 17(8):1211-22. PubMed ID: 26679839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress.
    Ji Z; Zeng Y; Liang Y; Qian Q; Yang C
    BMC Genomics; 2019 Jan; 20(1):91. PubMed ID: 30691406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.