These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31450669)

  • 61. Self-healing properties of nanocrystalline materials: a first-principles analysis of the role of grain boundaries.
    Xu J; Liu JB; Li SN; Liu BX; Jiang Y
    Phys Chem Chem Phys; 2016 Jul; 18(27):17930-40. PubMed ID: 27326789
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantized Grain Boundary States Promote Nanoparticle Alignment During Imperfect Oriented Attachment.
    Lange AP; Samanta A; Olson TY; Elhadj S
    Small; 2020 Jul; 16(29):e2001423. PubMed ID: 32519454
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In Situ Observations of the Interaction of Liquid Lead Inclusions with Grain Boundaries in Aluminum.
    Gabrisch H; Dahmen U; Johnson E
    Microsc Microanal; 1998 May; 4(3):286-293. PubMed ID: 9767666
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In-Situ TEM Investigation of Helium Implantation in Ni-SiOC Nanocomposites.
    Wei B; Wu W; Wang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836987
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pulse Electrodeposited Ni-26 at. %Mo-A Crossover from Nanocrystalline to Amorphous.
    Li J; Shi Y; Li X
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803394
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr).
    Zhou X; Yu XX; Kaub T; Martens RL; Thompson GB
    Sci Rep; 2016 Oct; 6():34642. PubMed ID: 27708360
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Elemental distribution, solute solubility and defect free volume in nanocrystalline restricted-equilibrium Cu-Ag alloys.
    Riedl T; Kirchner A; Eymann K; Shariq A; Schlesiger R; Schmitz G; Ruhnow M; Kieback B
    J Phys Condens Matter; 2013 Mar; 25(11):115401. PubMed ID: 23407023
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Irradiation deformation near different atomic grain boundaries in α-Zr: An investigation of thermodynamics and kinetics of point defects.
    Arjhangmehr A; Feghhi SA
    Sci Rep; 2016 Mar; 6():23333. PubMed ID: 27004606
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects.
    Taylor CA; Bufford DC; Muntifering BR; Senor D; Steckbeck M; Davis J; Doyle B; Buller D; Hattar KM
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28961199
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel.
    Pellicer E; Varea A; Sivaraman KM; Pané S; Suriñach S; Baró MD; Nogués J; Nelson BJ; Sort J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2265-74. PubMed ID: 21667966
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Wear mechanism of nanocrystalline metals.
    Qi Z; Jiang J; Meletis EI
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4227-32. PubMed ID: 19916435
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries.
    Uberuaga BP; Bai XM
    J Phys Condens Matter; 2011 Nov; 23(43):435004. PubMed ID: 21960062
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Digging gold: keV He(+) ion interaction with Au.
    Veligura V; Hlawacek G; Berkelaar RP; van Gastel R; Zandvliet HJ; Poelsema B
    Beilstein J Nanotechnol; 2013; 4():453-60. PubMed ID: 23946914
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Grain boundary-mediated plasticity in nanocrystalline nickel.
    Shan Z; Stach EA; Wiezorek JM; Knapp JA; Follstaedt DM; Mao SX
    Science; 2004 Jul; 305(5684):654-7. PubMed ID: 15286368
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure modulation driven by cyclic deformation in nanocrystalline NiFe.
    Cheng S; Zhao Y; Wang Y; Li Y; Wang XL; Liaw PK; Lavernia EJ
    Phys Rev Lett; 2010 Jun; 104(25):255501. PubMed ID: 20867394
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au.
    Li J; Fan C; Ding J; Xue S; Chen Y; Li Q; Wang H; Zhang X
    Sci Rep; 2017 Jan; 7():39484. PubMed ID: 28045044
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coarse graining and localized plasticity between sliding nanocrystalline metals.
    Romero PA; Järvi TT; Beckmann N; Mrovec M; Moseler M
    Phys Rev Lett; 2014 Jul; 113(3):036101. PubMed ID: 25083655
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Atomic Structure and Dynamics of Defects and Grain Boundaries in 2D Pd
    Chen J; Ryu GH; Sinha S; Warner JH
    ACS Nano; 2019 Jul; 13(7):8256-8264. PubMed ID: 31241313
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of grain size and microstructure on radiation stability of CeO2: an extensive study.
    Grover V; Shukla R; Kumari R; Mandal BP; Kulriya PK; Srivastava SK; Ghosh S; Tyagi AK; Avasthi DK
    Phys Chem Chem Phys; 2014 Dec; 16(48):27065-73. PubMed ID: 25383891
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In situ TEM observation of alpha-particle induced annealing of radiation damage in Durango apatite.
    Li W; Shen Y; Zhou Y; Nan S; Chen CH; Ewing RC
    Sci Rep; 2017 Oct; 7(1):14108. PubMed ID: 29074979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.