These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 31450847)
21. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K Chen J; Zhang H; Zhang X; Tang M Front Plant Sci; 2017; 8():1739. PubMed ID: 29067036 [TBL] [Abstract][Full Text] [Related]
22. Nitroxin and arbuscular mycorrhizal fungi alleviate negative effects of drought stress on Kamali S; Mehraban A Plant Signal Behav; 2020 Nov; 15(11):1813998. PubMed ID: 32902363 [TBL] [Abstract][Full Text] [Related]
23. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis. Chandrasekaran M; Kim K; Krishnamoorthy R; Walitang D; Sundaram S; Joe MM; Selvakumar G; Hu S; Oh SH; Sa T Front Microbiol; 2016; 7():1246. PubMed ID: 27563299 [TBL] [Abstract][Full Text] [Related]
24. Arbuscular mycorrhizal fungi communities and promoting the growth of alfalfa in saline ecosystems of northern China. Xu W; Liu Q; Wang B; Zhang N; Qiu R; Yuan Y; Yang M; Wang F; Mei L; Cui G Front Plant Sci; 2024; 15():1438771. PubMed ID: 39268000 [TBL] [Abstract][Full Text] [Related]
25. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Pedranzani H; Rodríguez-Rivera M; Gutiérrez M; Porcel R; Hause B; Ruiz-Lozano JM Mycorrhiza; 2016 Feb; 26(2):141-52. PubMed ID: 26184604 [TBL] [Abstract][Full Text] [Related]
26. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Feng G; Zhang FS; Li XL; Tian CY; Tang C; Rengel Z Mycorrhiza; 2002 Aug; 12(4):185-90. PubMed ID: 12189473 [TBL] [Abstract][Full Text] [Related]
27. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Wang F; Adams CA; Shi Z; Sun Y Chemosphere; 2018 Oct; 209():421-429. PubMed ID: 29936115 [TBL] [Abstract][Full Text] [Related]
28. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution. Porcel R; Aroca R; Azcon R; Ruiz-Lozano JM Mycorrhiza; 2016 Oct; 26(7):673-84. PubMed ID: 27113587 [TBL] [Abstract][Full Text] [Related]
29. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Al-Karaki G; McMichael B; Zak J Mycorrhiza; 2004 Aug; 14(4):263-9. PubMed ID: 12942358 [TBL] [Abstract][Full Text] [Related]
30. Silicon application induces changes C:N:P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Calero Hurtado A; Chiconato DA; Prado RM; Sousa Junior GDS; Olivera Viciedo D; Piccolo MC Saudi J Biol Sci; 2020 Dec; 27(12):3711-3719. PubMed ID: 33304182 [TBL] [Abstract][Full Text] [Related]
31. Effect of benomyl-mediated mycorrhizal association on the salinity tolerance of male and monoecious mulberry clones. Wang Y; Zhang N; Wu A; Lv Z; Jia Wei ; Li Y Plant Physiol Biochem; 2023 Feb; 195():67-76. PubMed ID: 36603450 [TBL] [Abstract][Full Text] [Related]
32. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Chang W; Sui X; Fan XX; Jia TT; Song FQ Front Microbiol; 2018; 9():652. PubMed ID: 29675008 [No Abstract] [Full Text] [Related]
33. Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Stewart LI; Hamel C; Hogue R; Moutoglis P Mycorrhiza; 2005 Nov; 15(8):612-619. PubMed ID: 16059721 [TBL] [Abstract][Full Text] [Related]
34. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Symanczik S; Lehmann MF; Wiemken A; Boller T; Courty PE Mycorrhiza; 2018 Nov; 28(8):779-785. PubMed ID: 30006910 [TBL] [Abstract][Full Text] [Related]
35. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system. Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166 [TBL] [Abstract][Full Text] [Related]
36. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier. Wei X; Liu L; Lu C; Yuan F; Han G; Wang B Planta; 2021 Sep; 254(4):81. PubMed ID: 34554320 [TBL] [Abstract][Full Text] [Related]
37. Soil applied glycine betaine with Arbuscular mycorrhizal fungi reduces chromium uptake and ameliorates chromium toxicity by suppressing the oxidative stress in three genetically different Sorghum (Sorghum bicolor L.) cultivars. Kumar P BMC Plant Biol; 2021 Jul; 21(1):336. PubMed ID: 34261429 [TBL] [Abstract][Full Text] [Related]
38. Sex-Specific Differences in the Physiological and Biochemical Performance of Arbuscular Mycorrhizal Fungi-Inoculated Mulberry Clones Under Salinity Stress. Wang YH; Zhang NL; Wang MQ; He XB; Lv ZQ; Wei J; Su X; Wu AP; Li Y Front Plant Sci; 2021; 12():614162. PubMed ID: 33815436 [TBL] [Abstract][Full Text] [Related]
40. Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. Pan J; Peng F; Tedeschi A; Xue X; Wang T; Liao J; Zhang W; Huang C Bot Stud; 2020 Apr; 61(1):13. PubMed ID: 32307601 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]