These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 31450862)

  • 21. Regulatory inter-domain interactions influence Hsp70 recruitment to the DnaJB8 chaperone.
    Ryder BD; Matlahov I; Bali S; Vaquer-Alicea J; van der Wel PCA; Joachimiak LA
    Nat Commun; 2021 Feb; 12(1):946. PubMed ID: 33574241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordinated Conformational Processing of the Tumor Suppressor Protein p53 by the Hsp70 and Hsp90 Chaperone Machineries.
    Dahiya V; Agam G; Lawatscheck J; Rutz DA; Lamb DC; Buchner J
    Mol Cell; 2019 May; 74(4):816-830.e7. PubMed ID: 31027879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alternative modes of client binding enable functional plasticity of Hsp70.
    Mashaghi A; Bezrukavnikov S; Minde DP; Wentink AS; Kityk R; Zachmann-Brand B; Mayer MP; Kramer G; Bukau B; Tans SJ
    Nature; 2016 Nov; 539(7629):448-451. PubMed ID: 27783598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disaggregating chaperones: an unfolding story.
    Sharma SK; Christen P; Goloubinoff P
    Curr Protein Pept Sci; 2009 Oct; 10(5):432-46. PubMed ID: 19538153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chaperone machines in action.
    Saibil HR
    Curr Opin Struct Biol; 2008 Feb; 18(1):35-42. PubMed ID: 18242075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity.
    Ciesielski SJ; Young C; Ciesielska EJ; Ciesielski GL
    Enzymes; 2023; 54():221-245. PubMed ID: 37945173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity.
    Faust O; Abayev-Avraham M; Wentink AS; Maurer M; Nillegoda NB; London N; Bukau B; Rosenzweig R
    Nature; 2020 Nov; 587(7834):489-494. PubMed ID: 33177718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The metazoan protein disaggregase and amyloid depolymerase system: Hsp110, Hsp70, Hsp40, and small heat shock proteins.
    Torrente MP; Shorter J
    Prion; 2013; 7(6):457-63. PubMed ID: 24401655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery.
    Pratt WB; Toft DO
    Exp Biol Med (Maywood); 2003 Feb; 228(2):111-33. PubMed ID: 12563018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.
    Yu HY; Ziegelhoffer T; Osipiuk J; Ciesielski SJ; Baranowski M; Zhou M; Joachimiak A; Craig EA
    J Mol Biol; 2015 Apr; 427(7):1632-43. PubMed ID: 25687964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chaperone-client interactions: Non-specificity engenders multifunctionality.
    Koldewey P; Horowitz S; Bardwell JCA
    J Biol Chem; 2017 Jul; 292(29):12010-12017. PubMed ID: 28620048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC.
    Zhang Y; Sinning I; Rospert S
    Nat Struct Mol Biol; 2017 Aug; 24(8):611-619. PubMed ID: 28771464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing de Novo Small Molecules That Control Heat Shock Protein 70 (Hsp70) and Heat Shock Organizing Protein (HOP) within the Chaperone Protein-Folding Machinery.
    Zaiter SS; Huo Y; Tiew FY; Gestwicki JE; McAlpine SR
    J Med Chem; 2019 Jan; 62(2):742-761. PubMed ID: 30507174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system.
    Brychzy A; Rein T; Winklhofer KF; Hartl FU; Young JC; Obermann WM
    EMBO J; 2003 Jul; 22(14):3613-23. PubMed ID: 12853476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly.
    Hervás R; Oroz J
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33276458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code.
    Nitika ; Porter CM; Truman AW; Truttmann MC
    J Biol Chem; 2020 Jul; 295(31):10689-10708. PubMed ID: 32518165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding chaperone specificity: evidence for a 'client code'.
    Omkar S; Rysbayeva A; Truman AW
    Trends Biochem Sci; 2023 Aug; 48(8):662-664. PubMed ID: 37328388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70.
    Gonçalves CC; Sharon I; Schmeing TM; Ramos CHI; Young JC
    Sci Rep; 2021 Aug; 11(1):17139. PubMed ID: 34429462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity.
    Gebauer M; Zeiner M; Gehring U
    FEBS Lett; 1997 Nov; 417(1):109-13. PubMed ID: 9395086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins.
    Glover JR; Lindquist S
    Cell; 1998 Jul; 94(1):73-82. PubMed ID: 9674429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.