BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31450924)

  • 1. Studies on Fundamental Interaction Parameters for Stainless Steel and Titanium Biomaterials Using Flattened and Un-Flattened Megavoltage X-Ray Beams.
    Rajamanickam T; Muthu S; Murugan P; Pathikonda M; Senthilnathan K; Nambi Raj NA; Ramesh Babu P
    Asian Pac J Cancer Prev; 2019 Aug; 20(8):2485-2491. PubMed ID: 31450924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of dosimetric properties of flattened and unflattened megavoltage x ray beam on high Z implant materials.
    Rajamanickam T; Muthu S; Murugan P; Pathokonda M; Senthilnathan K; Arunai Nambi Raj N; Ramesh Babu P
    J Appl Clin Med Phys; 2018 Nov; 19(6):265-273. PubMed ID: 30267468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Assessment of Dosimetric Characteristics of Inline 2.5 Mega Voltage Unflattened Imaging X-Ray Beam.
    Rajamanickam T; Muthu S; Murugan P; Dinesan C; Mekala C; Senthilnathan K; Arunai Nambi Raj N; Ramesh Babu P
    Asian Pac J Cancer Prev; 2019 Aug; 20(8):2531-2539. PubMed ID: 31450929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical note: Error analysis of material-decomposition-based effective atomic number quantification method.
    Chen L; Ji X; Wang Z; Chen Y
    Med Phys; 2024 Jan; 51(1):419-427. PubMed ID: 37459046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the dose perturbation by stents as a function of X-ray beam energy.
    Schell MC; Rosenzweig DP; Weaver KA; Fenton BM; Rubin P
    Cardiovasc Radiat Med; 1999; 1(2):154-9. PubMed ID: 11229548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target.
    Faddegon BA; Wu V; Pouliot J; Gangadharan B; Bani-Hashemi A
    Med Phys; 2008 Dec; 35(12):5777-86. PubMed ID: 19175135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A surface energy spectral study on the bone heterogeneity and beam obliquity using the flattened and unflattened photon beams.
    Chow JC; Owrangi AM
    Rep Pract Oncol Radiother; 2016; 21(1):63-70. PubMed ID: 26900360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photon beam quality variations of a flattening filter free linear accelerator.
    Georg D; Kragl G; Wetterstedt Sa; McCavana P; McClean B; Knöös T
    Med Phys; 2010 Jan; 37(1):49-53. PubMed ID: 20175465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study on a flattening filter-free 18-MV photon beam of a medical linear accelerator.
    Mesbahi A; Nejad FS
    Radiat Med; 2008 Jul; 26(6):331-6. PubMed ID: 18677606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam characteristics of energy-matched flattening filter free beams.
    Paynter D; Weston SJ; Cosgrove VP; Evans JA; Thwaites DI
    Med Phys; 2014 May; 41(5):052103. PubMed ID: 24784392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of metal rate on the gamma shielding parameters of hydroxyapatite at medical treatment energies.
    Koksal OK; Apaydin G; Karahan IH; Tozar A
    Appl Radiat Isot; 2022 Dec; 190():110456. PubMed ID: 36174332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50-25.29 keV.
    Marashdeh M; Al-Hamarneh IF
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric characteristics of unflattened 6 MV photon beams of a clinical linear accelerator: a Monte Carlo study.
    Mesbahi A
    Appl Radiat Isot; 2007 Sep; 65(9):1029-36. PubMed ID: 17616465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.
    Sawkey DL; Faddegon BA
    Med Phys; 2009 Mar; 36(3):698-707. PubMed ID: 19378730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon and electron backscatter dose and energy spectrum analysis around Lipiodol using flattened and unflattened beams.
    Kawahara D; Ozawa S; Kimura T; Saito A; Nakashima T; Ohno Y; Murakami Y; Nagata Y; Shiinoki T
    J Appl Clin Med Phys; 2019 Jun; 20(6):178-183. PubMed ID: 30884060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling a hypothetical 170Tm source for brachytherapy applications.
    Enger SA; D'Amours M; Beaulieu L
    Med Phys; 2011 Oct; 38(10):5307-10. PubMed ID: 21992348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the effect of field sizes on radiation dose in the presence of metal materials using Monte Carlo simulation.
    Sarigul N
    Appl Radiat Isot; 2022 Apr; 182():110143. PubMed ID: 35152162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buildup region and depth of dose maximum of megavoltage x-ray beams.
    Sixel KE; Podgorsak EB
    Med Phys; 1994 Mar; 21(3):411-6. PubMed ID: 8208216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.