These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 3145127)

  • 1. Crystals in calcified epiphyseal cartilage and cortical bone of the rat.
    Arsenault AL; Grynpas MD
    Calcif Tissue Int; 1988 Oct; 43(4):219-25. PubMed ID: 3145127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron microscopic analysis of mineral deposits in the calcifying epiphyseal growth plate.
    Arsenault AL; Hunziker EB
    Calcif Tissue Int; 1988 Feb; 42(2):119-26. PubMed ID: 2450627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyapatite formation in the presence of proteoglycans of reduced sulfate content: studies in the brachymorphic mouse.
    Boskey AL; Maresca M; Wikstrom B; Hjerpe A
    Calcif Tissue Int; 1991 Dec; 49(6):389-93. PubMed ID: 1818763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.
    Addison WN; Nelea V; Chicatun F; Chien YC; Tran-Khanh N; Buschmann MD; Nazhat SN; Kaartinen MT; Vali H; Tecklenburg MM; Franceschi RT; McKee MD
    Bone; 2015 Feb; 71():244-56. PubMed ID: 25460184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentration without affecting structural properties of bone mineral crystals.
    Misof BM; Roschger P; Tesch W; Baldock PA; Valenta A; Messmer P; Eisman JA; Boskey AL; Gardiner EM; Fratzl P; Klaushofer K
    Calcif Tissue Int; 2003 Sep; 73(3):251-7. PubMed ID: 14667138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.
    Henmi A; Okata H; Anada T; Yoshinari M; Mikami Y; Suzuki O; Sasano Y
    J Bone Miner Metab; 2016 Jan; 34(1):41-50. PubMed ID: 25773047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histology of epiphyseal cartilage calcification and endochondral ossification.
    Amizuka N; Hasegawa T; Oda K; Luiz de Freitas PH; Hoshi K; Li M; Ozawa H
    Front Biosci (Elite Ed); 2012 Jan; 4(6):2085-100. PubMed ID: 22202021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant.
    CAMERON DA; ROBINSON RA
    J Biophys Biochem Cytol; 1956 Jul; 2(4 Suppl):253-60. PubMed ID: 13357550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques.
    Ziv V; Weiner S
    Connect Tissue Res; 1994; 30(3):165-75. PubMed ID: 8039384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural abnormalities in bone and calcifying cartilage in two siblings with a newly described recessive lethal chondrodysplasia.
    Gruber HE; Greenberg CR; Lachman RS; Rimoin DL
    Ultrastruct Pathol; 1990; 14(4):343-55. PubMed ID: 2382311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage.
    Kim H; Rey C; Glimcher MJ
    Calcif Tissue Int; 1996 Jul; 59(1):58-63. PubMed ID: 8661986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electron microscopy studies of the bone-hydroxylapatite interface.
    Tracy BM; Doremus RH
    J Biomed Mater Res; 1984 Sep; 18(7):719-26. PubMed ID: 6544773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The morphology of bone mineral crystals.
    Jackson SA; Cartwright AG; Lewis D
    Calcif Tissue Res; 1978 Aug; 25(3):217-22. PubMed ID: 709402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineral-matrix interactions in bone and cartilage.
    Boskey AL
    Clin Orthop Relat Res; 1992 Aug; (281):244-74. PubMed ID: 1323440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mineral and crystal formation "in vitro" by lipids extracted from bovine compact bone].
    Ngoma Z; Devis R
    Pathol Biol (Paris); 1976 May; 24(5):307-11. PubMed ID: 781600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two patterns of calcification in primary (physeal) and secondary (epiphyseal) growth cartilage.
    Brown RA; Blunn GW; Salisbury JR; Byers PD
    Clin Orthop Relat Res; 1993 Sep; (294):318-24. PubMed ID: 8358937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for the distribution of HAP crystallites in bone--an hypothesis.
    Lees S
    Calcif Tissue Int; 1979 Mar; 27(1):53-6. PubMed ID: 111788
    [No Abstract]   [Full Text] [Related]  

  • 19. A method on strain measurement of HAP in cortical bone from diffusive profile of X-ray diffraction.
    Fujisaki K; Tadano S; Sasaki N
    J Biomech; 2006; 39(3):579-86. PubMed ID: 16389098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.